ソースを表示
提供: Internet Web School
物理/付録1 ベクトル積
のソース
移動:
ナビゲーション
,
検索
以下に示された理由により、このページの編集を行うことができません:
この操作は、
登録利用者
のグループに属する利用者のみが実行できます。
このページのソースを閲覧し、コピーすることができます:
= 解説= 本文では、ベクトル積に関する命題だけを述べた。 <br/> しかし、ベクトル積をよく理解するには、その証明を理解することも重要なので、 <br/> この節では、くわしく紹介する。 == ベクトル積の命題と証明 == 本節での全ての命題で、<br/> $ \vec{a}, \vec{b}, \vec{c}$は3次元ベクトル<br/> $\alpha$を実数とする。<br/><br/> 命題1. $ \quad \vec{a} $ を, $\vec{c} $と垂直な成分$ \vec{a_\perp}$ と,平行な成分$\vec{a_\parallel}$ の和に分解するとき、 <br/> $\quad \vec{a} \times \vec{c}= \vec{a_\perp} \times \vec{c}$ <br/> $\quad \vec{a_\parallel} \times \vec{c}= 0$ <br/> 証明;ベクトル積の定義から、容易に示せる。<br/> 2つのベクトルの作る平行四辺形の面積と方向・向きを考えれば良い。<br/> 命題2.$ \quad \vec{a} \times \vec{b}= -\vec{b} \times \vec{a}$ <br/> 証明;2つのベクトルを入れ替えても、それらが作る平行四辺形の面積は変わらず、この四辺形に直交する直線の方向も変わらない。<br/> しかし、ベクトル積の向きは、逆向きになる。<br/> ベクトル積の定義から、$\quad \vec{a} \times \vec{b}= -\vec{b} \times \vec{a}$ が示せた。<br/><br/> 命題3 <br/> $ (\alpha\vec{a})\times \vec{b}= \alpha(\vec{a} \times \vec{b})= \vec{a}\times (\alpha\vec{b})$ <br/ 証明;実数$\alpha$ が正、零、負の場合に分けて考える。<br/> いずれの場合にも,] ベクトル積の定義とベクトルと実数の積の性質から、容易に証明できる。<br/> 命題4.$ \quad (\vec{a}+ \vec{b})\times \vec{c}= \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$ <br/> 証明;<br/> この証明には少し工夫が必要である。<br/> ベクトル積の命題の中でも、もっとも大切なものなので、詳しく説明しよう。<br/> ① $ \vec{a}, \quad \vec{b}$ と$ \vec{c}$ が直交する場合。図参照のこと<br/> ・議論をやさしくするため、ベクトルを、空間の原点$O$ を始点とする有向線分で代表させる。<br/> ・$ \vec{c}$ と直交し$O$ を通る平面を$H$とする。<br/> ・仮定より$ \vec{a},\quad \vec{b}$は、ともに平面$H$上のベクトルである。<br/> ・$\vec{a} \times \vec{c} ,\quad \vec{b} \times \vec{c}$も、<br/> ベクトル積の定義により、共に$ \vec{c}$ と直交するので、$H$上のベクトルである。<br/> これら四つのベクトルはすべて平面$H$上にあるので、今後の議論はこの平面上で進める。<br/> ⅰ)$\vec{a} \times \vec{c}, \vec{b} \times \vec{c}$ の張る平行四辺形は, <br/>$\vec{a}, \vec{b}$の張る平行四辺形を、$\| \vec{c}\|$倍し,原点周りに90度回転したものになることを、示そう。<br/><br/> ・$\vec{a} \times \vec{c} $は、ベクトル積の定義から、$ \vec{a}$ と直交する。<br/> そのため、$\vec{a}$ を平面$H$上で、原点まわりに、90度右回りか、左回りすれば、方向と向きが一致する。<br/> ・$\vec{b} \times \vec{c} $も、同様に考え、$\vec{b}$ を平面$H$上で、原点まわりに、90度右回りか、左回りすれば、方向と向きが一致することが分かる。<br/> ・どちら周りの回転になるかは、ベクトル積の定義によって決まるが、<br/> 後者の回転の向きが、前者の回転の向きと一致することが分かる。<br/> ・$\vec{a}\times \vec{c}$ の大きさは、<br/> $\|\vec{a}\times \vec{c}\|=\|\vec{a}\|\|\vec{c}\|\cos\pi/2=\|\vec{a}\|\|\vec{c}\|$ なので、$\vec{a}$ の大きさの$\|\vec{c}\|$倍になる。<br/> 同様に、$\vec{b}\times \vec{c}$ の大きさは、$\vec{a}$ の大きさの$\|\vec{c}\|$倍になる。<br/> ・以上の結果より、所望の結果は示された。<br/><br/> ⅱ)$ \qquad (\vec{a}+ \vec{b})\times \vec{c}= \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$を示そう。<br/> ・ ⅰ)と同じ議論により、<br/> $(\vec{a}+ \vec{b}) \times \vec{c}$は$\vec{a}, \vec{b}$の張る平行四辺形の対角線を、原点周りに90度、同じ向きに回転させ、$\|\vec{c}\|$倍させたものであることが分かる。<br/> ・すると、ⅰ)で示したことから、$(\vec{a}+ \vec{b}) \times \vec{c}$は<br/> $\vec{a} \times \vec{c}, \vec{b} \times \vec{c}$ の張る平行四辺形の対角線$\vec{a} \times \vec{c}+\vec{b} \times \vec{c}$ に等しいことが分かる。<br/> ・以上で①が示せた。<br/> ② 一般の場合。<br/> 命題1より、$\perp$ を$\vec{c}$と垂直な成分を表すとすると、 $ (\vec{a}+ \vec{b})\times \vec{c}= (\vec{a}+ \vec{b})_\perp \times \vec{c} \qquad \qquad \qquad $(1)<br/> $(\vec{a}+ \vec{b})_\perp =\vec{a}_\perp +\vec{b}_\perp$なので、(1)式は、<br/> $ = (\vec{a}_\perp +\vec{b}_\perp) \times \vec{c}$ <br/> ①より、<br/> $ = \vec{a}_\perp \times \vec{c}+\vec{b}_\perp\times \vec{c}=\vec{a} \times \vec{c}+\vec{b} \vec{c}$ $ \qquad $ 命題4の証明終わり。<br/> 命題4の系 <br/> $ \quad \vec{a} \times (\vec{b}+ \vec{c})= \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$<br/> $ \quad (\vec{a}+ \vec{b}+\vec{c})\times \vec{d}=\vec{a}\times \vec{d}+\vec{b}\times \vec{d}+\vec{c}\times \vec{d}$<br/> 証明;<br/> 命題2より、<br/> $\vec{a} \times (\vec{b}+ \vec{c})= -\left((\vec{b}+ \vec{c})\times \vec{a}\right) $ 命題3から <br/> $=-\left((\vec{b}+ \vec{c})\right)\times \vec{a}$ 命題4より、<br/> $= -(\vec{b} \times \vec{a}+ \vec{c} \times \vec{a})$ <br/> 再び命題2より、<br/> $=\vec{a} \times \vec{b} + \vec{a} \times \vec{c} \quad $前半の証明終わり <br/> 命題2より、<br/> $ (\vec{a}+ \vec{b}+\vec{c})\times \vec{d}=(\vec{a}+ \vec{b})\times \vec{d}+\vec{c})\times \vec{d}$ <br/> 再び命題2より、<br/> $ =\vec{a}\times \vec{d}+\vec{b}\times \vec{d}+\vec{c}\times \vec{d}$ $\quad$証明終わり。<br/> 命題5.$\quad (\vec{e_1},\vec{e_2}, \vec{e_3})$ を<br/> それぞれ大きさ(長さ)1で互いに直交し、[[wikipedia_ja:右手系|右手系]]をなす、ベクトル(右手系をなす正規直交基底)とする。<br/> この時、<br/> $ \quad \vec{e_1} \times \vec{e_2} = \vec{e_3}, \quad \vec{e_2} \times \vec{e_3} = \vec{e_1}, \quad \vec{e_3} \times \vec{e_1} = \vec{e_2}$<br/> 証明;ベクトル積と$(e_1,e_2,e_3)$ の定義から明らかである。<br/> 命題6.ベクトル$\vec a, \vec b$を,命題5で用いた基底$ (\vec{e_1},\vec{e_2}, \vec{e_3})$ で決まる座標の座標成分で表示しておく。<br/> すると$\vec a \times \vec b=(a_yb_z-a_zb_y,a_zb_x-a_xb_z,a_xb_y-a_yb_x)$ <br/> 証明;$\vec a=a_x\vec{e_x}+a_y\vec{e_y}+a_z\vec{e_z}$, <br/> $\vec b=b_x\vec{e_x}+b_y\vec{e_y}+b_z\vec{e_z}$と表せるので、<br/> $\vec a \times \vec b=(a_x\vec{e_x}+a_y\vec{e_y}+a_z\vec{e_z})\times \vec b$ 性質3の系から<br/> $=a_x\vec{e_x}\times \vec b +a_y\vec{e_y}\times \vec b +a_z\vec{e_z}\times \vec b$ $\qquad$ (1)<br/> 式(1)の第1項 $a_x\vec{e_x}\times \vec b$ に $\vec b=b_x\vec{e_x}+b_y\vec{e_y}+b_z\vec{e_z}$ を代入して、性質3の系を使って変形すると、<br/> $a_x\vec{e_x}\times \vec b =a_x\vec{e_x}\times b_x\vec{e_x} +a_x\vec{e_x}\times b_y\vec{e_y} +a_x\vec{e_x}\times b_z\vec{e_z}$ $\qquad$ (2) <br/> 性質4と性質5を使うと、<br/> $a_x\vec{e_x}\times b_x\vec{e_x} =a_x b_x\vec{e_x}\times \vec{e_x} =\vec 0$ 。<br/> 同様の計算を行うと、<br/> $a_x\vec{e_x}\times b_y\vec{e_y} =a_x b_y\vec{e_x}\times \vec{e_y} =a_x b_y\vec{e_z}$ <br/> $a_x\vec{e_x}\times b_z\vec{e_z} =a_x b_z\vec{e_x}\times \vec{e_z} =-a_x b_z\vec{e_y}$ <br/> 式(2)にこれらを代入して、<br/> $a_x\vec{e_x}\times \vec b =a_x b_y\vec{e_z} - a_x b_z\vec{e_y} $ $\qquad$ (3)<br/> 式(1)の第2項、第3項も同様に計算すると、<br/> $a_y\vec{e_y}\times \vec b =a_y b_z\vec{e_x} - a_y b_x\vec{e_z} $ $\qquad$ (4)<br/> $a_z\vec{e_z}\times \vec b =a_z b_x\vec{e_y} - a_z b_y\vec{e_x} $ $\qquad$ (5)<br/> 式(3),(4),(5) を、式 (1)に代入すると、<br/> $\vec a \times \vec b =a_x b_y\vec{e_z} - a_x b_z\vec{e_y} +a_y b_z\vec{e_x} - a_y b_x\vec{e_z} +a_z b_x\vec{e_y} - a_z b_y\vec{e_x}$ <br/> $ =(a_y b_z - a_z b_y)\vec{e_x} +(a_z b_x - a_x b_z)\vec{e_y} +(a_x b_y - a_y b_x)\vec{e_z}$ <br/> 性質6の証明終わり。<br/> 性質7の証明;<br/> $ \quad (\vec{a} \times \vec{b})\cdot \vec{c}= (\vec{c} \times \vec{a})\cdot\vec{b}$を証明しよう。<br/> 残りも、同様に証明出来るので各自試みてください。<br/> 右手系をなす一つの直交座標を決める。<br/> 3つのベクトルを、この座標の成分で表示して、性質6と内積の性質を使えば、左右が等しいことが証明できる。<br/> 概略をスケッチしよう。<br/> $ \quad (\vec{a} \times \vec{b})\cdot \vec{c} =(a_yb_z-a_zb_y,a_zb_x-a_xb_z,a_xb_y-a_yb_x) \cdot (c_x,c_y,c_z) =(a_yb_z-a_zb_y)c_x+(a_zb_x-a_xb_z)c_y+(a_xb_y-a_yb_x)c_z$ <br/> $ \quad (\vec{c} \times \vec{a})\cdot\vec{b}$も、これと同じように計算する。<br/>これら両式を整頓すると、同じものであることが分かる。<br/> 命題7.<br/> $(\vec{a} \times \vec{b})\cdot \vec{c}= (\vec{c} \times \vec{a})\cdot\vec{b} =(\vec{b} \times \vec{c})\cdot\vec{a}$ <br/> 証明<br/> $(\vec{a} \times \vec{b})\cdot \vec{c}= (\vec{c} \times \vec{a})\cdot\vec{b}$を証明しよう。<br/> 残りも、同様に証明出来るので各自試みてください。<br/> 右手系をなす一つの直交座標を決める。<br/> 3つのベクトルを、この座標の成分で表示して、性質6と内積の性質を使えば、左右が等しいことが証明できる。<br/> 概略をスケッチしよう。<br/> $(\vec{a} \times \vec{b})\cdot \vec{c} =(a_yb_z-a_zb_y,a_zb_x-a_xb_z,a_xb_y-a_yb_x) \cdot (c_x,c_y,c_z) =(a_yb_z-a_zb_y)c_x+(a_zb_x-a_xb_z)c_y+(a_xb_y-a_yb_x)c_z$ <br/> $ \quad (\vec{c} \times \vec{a})\cdot\vec{b}$も、これと同じように計算する。<br/>これら両式を整頓すると、同じものであることが分かる。<br/> 性質7の証明終わり。<br/> 命題8. $ \quad \vec{a(t)} $ と $\vec{b(t)} $を,$t$にかんして微分可能な、ベクトルに値をとる関数とする。すると、<br/> $ \quad \vec{a(t)} \times \vec{b(t)}$ は、$t$にかんして微分可能で、<br/> $ \quad \frac{d}{dt}(\vec{a(t)} \times \vec{b(t)}) =(\frac{d}{dt}\vec{a(t)} )\times \vec{b(t)}+\vec{a(t)}\times (\frac{d}{dt}\vec{b(t)})$ 証明<br/> すでにこのテキストで紹介した、ベクトル値関数の微分の定義を用いて証明する。<br/> $ \quad \frac{d}{dt}(\vec{a(t)} \times \vec{b(t)}) =\lim_{\delta t \to 0} (\vec a(t+\delta t)\times \vec{b(t+\delta t)}- \vec{a(t)} \times \vec{b(t)})/\delta t$ $\qquad $ (1) <br/> この極限が存在し、<br/> $\frac{d}{dt}\vec{a(t)} \times \vec{b(t)}+\vec{a(t)}\times \frac{d}{dt}\vec{b(t)}$<br/> になることを示せば性質8は証明できたことになる。<br/> 極限の計算が進むよう、右辺の式の分母は変形しよう。<br/> 関数の積の微分公式の証明と同じ技巧を用いる。<br/> $ \vec a(t+\delta t)\times \vec{b(t+\delta t)} - \vec{a(t)} \times \vec{b(t)}$ <br/> $ = \vec a(t+\delta t)\times \vec{b(t+\delta t)} -\vec a(t)\times \vec{b(t+\delta t)} +\vec a(t)\times \vec{b(t+\delta t)} - \vec{a(t)} \times \vec{b(t)}$ <br/> ベクトル積の性質3を利用すると、 <br/> $ = \left(\vec a\left(t+\delta t\right) -\vec a\left(t\right)\right) \times \vec b\left(t+\delta t\right) +\vec a\left(t\right)\times \left(\vec b\left(t+\delta t\right)- \vec b\left(t\right)\right) $ この式を式(1)の右辺の分子の項に代入し整頓すると<br/> $ \quad \frac{d}{dt}(\vec{a(t)} \times \vec{b(t)}) =\lim_{\delta t \to 0} \frac{\vec a(t+\delta t)\times \vec b(t+\delta t)- \vec a(t) \times \vec b(t)} {\delta t}$ <br/> $=\lim_{\delta t \to 0} \frac{\left(\vec a\left(t+\delta t\right) -\vec a\left(t\right)\right) \times \vec b\left(t+\delta t\right) +\vec a\left(t\right)\times \left(\vec b\left(t+\delta t\right)- \vec b\left(t\right)\right) } {\delta t} $ <br/> ベクトル積の性質4を使い、<br/> $=\lim_{\delta t \to 0}\left( \frac{\vec a(t+\delta t) -\vec a(t)}{\delta t} \times \vec b\left(t+\delta t\right) + \vec a(t)\times \frac{\vec b(t+\delta t)- \vec b(t)} {\delta t} \right)$ <br/> 極限の性質を使って、<br/> $=\lim_{\delta t \to 0} \frac{\vec a(t+\delta t) -\vec a(t)}{\delta t} \times \lim_{\delta t \to 0}\vec b(t+\delta t) + \vec a(t)\times \lim_{\delta t \to 0}\frac{\vec b(t+\delta t)- \vec b(t)}{\delta t} $ <br/> 式中の極限は、$\vec a,\vec b$が、微分可能なので存在し、 <br/> $\lim_{\delta t \to 0} \frac{\vec a(t+\delta t) -\vec a(t)}{\delta t} =\frac{d\vec a(t)}{dt}$ <br/> $\lim_{\delta t \to 0} \frac{\vec b(t+\delta t) -\vec b(t)}{\delta t} =\frac{d\vec b(t)}{dt}$ <br/> また、$\lim_{\delta t \to 0}\vec b(t+\delta t)=\vec b(t) $ なので、 <br/> 所望の結果が得られた。性質8の証明終わり。
物理/付録1 ベクトル積
に戻る。
表示
本文
トーク
ソースを表示
履歴
個人用ツール
ログイン
案内
メインページ
コミュニティ・ポータル
最近の出来事
最近の更新
おまかせ表示
ヘルプ
検索
ツールボックス
リンク元
関連ページの更新状況
特別ページ一覧