ソースを表示
提供: Internet Web School
物理/解析学入門(1)実数の性質、連続関数、導関数と微分
のソース
移動:
ナビゲーション
,
検索
以下に示された理由により、このページの編集を行うことができません:
この操作は、
登録利用者
のグループに属する利用者のみが実行できます。
このページのソースを閲覧し、コピーすることができます:
= 8.2 解析学入門= == 序 == 一変数関数の解析学を紹介する。<br/> 解析学は実数の連続性と極限の概念を用いる無限算法(微分、積分)を扱う<br/> 数学の基幹分野の一つである。<br/> 高校でならう解析学の概略だけを知りたい方は、以下の教科書で学習してください。<br/> (1)関数や方程式の知識<br/> *[[wikibooks_ja:高等学校数学I/方程式と不等式|高等学校数学I/方程式と不等式(ウィキブックス)]] *[[wikibooks_ja:高等学校数学I/二次関数|高等学校数学I/二次関数(ウィキブックス)]] $\quad$物理学では、指数関数をはじめ色々な関数をよく使う。<br/> $\quad$これについては下記の本に要約が説明されている。<br/> *[[wikibooks_ja:高等学校数学II/いろいろな関数|高等学校数学II/いろいろな関数(ウィキブックス)]] <br/> 指数関数や対数関数の上記の本の解説は不十分なので、<br/> 興味ある方は、本テキストの *[[物理/ 8章の指数関数と対数関数付録#指数関数と対数関数|「8.3 8章の付録 指数関数と対数関数」]]<br/> をご覧ください。 (2)ネイピア数 e の理解に必要な数学<br/> 微分や積分で重要な役割を演じる実数にネイピア数eがある。<br/> 本テキストでも頻繁に登場する。<br/> この数は、$\lim_{n\to \infty}(1+\frac{1}{n})^{n}$ で定義される。<br/> この極限が存在し、2と3の間の数になることを証明するには、2項定理が必要になる。<br/> これについては<br/> *[[wikibooks_ja:初等整数論/パスカルの三角形|初等整数論/パスカルの三角形(ウィキブックス)]] 問題1<br/> ${}_5C_0,\quad {}_5C_1,\quad {}_5C_2,\quad {}_5C_3,\quad {}_5C_4,\quad {}_5C_5$ は、いくつか?<br/><br/> (3)微分・積分<br/> 物理の学習には微分と積分が必須である。<br/> 関数の微分は、極限を利用して定義される。<br/> 極限がよくわからない場合には、高等学校数学III/極限(ウィキブックス)を概略理解してから、<br/> 高等学校数学II 微分・積分の考え(ウィキブックス)に進むと良いだろう。 *[[wikibooks_ja:高等学校数学II 微分・積分の考え|高等学校数学II 微分・積分の考え(ウィキブックス)]] *[[wikibooks_ja:高等学校数学III/極限|高等学校数学III/極限(ウィキブックス)]] *[[wikibooks_ja:高等学校数学III/微分法|高等学校数学III/微分法(ウィキブックス)]] *[[wikibooks_ja:高等学校数学III/積分法|高等学校数学III/積分法(ウィキブックス)]] 問題2<br/> 問題<br/> 問題<br/> 問題<br/> 問題<br/> 問題<br/> 問題<br/> 問題<br/> 問題<br/> 問題<br/> 問題<br/> 問題<br/> 問題<br/> 問題<br/> 問題<br/> 問題<br/> 問題<br/> (3)大学教養課程程度の解析学の基礎<br/> *[[wikibooks_ja:解析学基礎|解析学基礎(ウィキブックス)]] この節は、解析学の基礎(実数の連続性とリーマン積分)について、さらに知りたい方のために書かれている。<br/> 厳密さをかなり重視し、程度は大学専門課程の入り口に相当する。<br/><br/> 多変数関数の解析学については次章の「9章 物理数学2」で紹介する。 == 実数の連続性と極限 == 実数の連続性は、様々な極限の存在に根拠を与えるもので、<br/> 実数の持つ最も重要な性質といってもよい。<br/> === 上界、下界と有界集合=== ${\bf R}$を、全ての実数を要素とする集合とし、<br/> $A$をその部分集合(A \subset R)とする。<br/> 実数$u$が$A$の'''上界'''(upper bound)とは、<br/> 任意の$a \in A$に対して、$a \leq u$がなりたつこと$\Bigl((\forall{a})(a\in A \to a \leq u)\Bigr)$。<br/> 実数$l$が$A$の'''下界'''(lower bound)とは、<br/> 任意の$a \in A$に対して、$l \leq a$がなりたつこと。<br/> $U_A$を$A$の上界をすべて集めた集合$\Bigl(\{u \in R|(\forall{a})(a\in A \to a\leq u)\}\Bigr)$、<br/> $L_A$を$A$の下界をすべて集めた集合とする。<br/> $U_A$が空集合$\emptyset$でない(すなわち、$A$の上界が少なくとも一つ存在する)とき、<br/> $A$は'''上に有界'''であるといい、<br/> $L_A\neq \emptyset$の時、$A$は'''下に有界'''であるという。<br/> 上に有界で、下にも有界な集合($\subset {\bf R})$は、'''有界'''という。 === 実数の連続の公理と上限、下限=== $A \subset {\bf R}$とする。<br/><br/> '''実数の連続性の公理'''<br/> もし、$U_A \neq \emptyset$ならば、$U_A$は、最小元を持つ。<br/> もし、$L_A \neq \emptyset$ならば、$L_A$は、最大元を持つ。<br/><br/> 上限と下限の定義<br/> $U_A$の最小元を$A$の'''上限(supremum)'''あるいは'''最小上界(least upper bound)'''という。<br/> また、$L_A$の最大元を$A$の'''下限(infimum)'''あるいは'''最大下界(greatest lower bound)'''という。<br/><br/> 命題1<br/> $u$が$A(\subset {\bf R})$ の上限となるための必要十分条件は、<br/> ⅰ)$u$は$A$の上界。すなわち任意の$a\in A$にたいして$a \leq u$ <br/> ⅱ)$x<u$である任意の$x$は$A$の上界ではない。すなわち、$x<a$となる$a\in A$が存在<br/> である。<br/> 同様に、$l$が$A$ の下限となるための必要十分条件は、<br/> ⅰ)$l$は$A$の下界。すなわち任意の$a\in A$にたいして$l\leq a$ <br/> ⅱ)$l<x$である任意の$x$は$A$の下界ではない。すなわち、$a<x$となる$a\in A$が存在<br/> である。<br/> $A$ の上限を$\sup A$、下限を$\inf A$と書く。<br/> さらに、<br/> $A$が最大値を持つ場合には、Aの上限はAの最大値と一致し、<br/> $A$が最小値を持つ場合には、Aの下限はAの最小値と一致する。<br/><br/> 証明は、上限、下限の定義から、明らかなので省略する。<br/> 例;$A=(0,1)$のとき、$\sup A=1$,$\inf A=0$。<br/> これらは、ともに$A$の要素でないので、<br/> 上限1は$A$の最大元(最大値)ではなく、下限0は$A$の最小元(最小値)ではない。<br/> $A=[0,1]$のとき、$\sup A=1$,$\inf A=0$。<br/> これらは、ともに$A$の要素なので、<br/> 上限は最大限であり、下限は最小限となる。<br/> 命題2<br/> $A \subset B \subset {\bf R}$で、$B$は有界集合とする。<br/> このとき、$\inf B \leq \inf A \leq \sup A \leq \sup B$<br/> 証明は容易である。<br/><br/> === 実数列の極限 === 実数列$\bigl(x_{n}\bigr)_{n \in N}$とは、<br/> xが、自然数全体のなす集合Nから実数全体の作る集合Rへの写像であることと定義する。<br/> 論理記号で書けば、$(\forall n \in N)(x_{n} \in R)$<br/><br/> 定理1;<br/> 1) 単調増加で上に有界な数列$\bigl(x_{n}\bigr)_{n\in N}$(注参照)は収束する(極限値を持つ)。<br/> 2)単調減少で下に有界な数列は収束する。<br/> (注)数理論理学における論理の数学的モデルの一つであり、命題論理を拡張した[[wikipedia_ja:一階述語論理|一階述語論理]]で表現すると、<br/> $(\exists{U\in R} )(\forall{m} \in N)(\forall{n} \in N)( m\lt n \to x(m) \leq x_{n} \leq U)$ <br/><br/> 証明<br/> 1)だけ示す。<br/> $A \triangleq \{x_{n}|n\in N \}$とおくと、仮定からAは上に有界な集合なので、<br/>実数の連続性から上限(最小上界)$u$ を持つ。<br/> この $u$ が数列xの極限であることを示そう。<br/> 任意の小さい正数 $ \epsilon$ をとると、$u-\epsilon$ は集合Aの上界ではなくなるので <br/> $(\exists{m}\in N)\bigl(x(m) \gt u-\epsilon \bigr) $<br/> 数列は単調増加なので、$(\forall{n})\bigl(n \gt m \to x_{n} \gt u-\epsilon \bigr) \qquad \qquad \qquad (1)$<br/> 他方、$u$ は数列xの上界なので、<br/> $(\forall{n})\bigl(n\in N \to u \geq x_{n}\bigr) \qquad \qquad \qquad (2)$<br/> 式(1)と(2)から、<br/> どんなに小さな正数 $ \epsilon$ をとってもある自然数mが定まり、<br/> それより大きな自然数n に対して、$x_{n} \in [u-\epsilon,u+\epsilon]$ が示せた。<br/> 収束の定義から、数列xが$u$に収束することが示せた。<br/> 2)の証明も同様である。<br/><br/> 数列$(x_{n})_{n \in N}$ の項の中から番号の小さい順に次々と無限個を取り出すことにより、<br/> 新しい数列が得られる。<br/> このようにして作られる新しい数列を、元の数列の部分列という。<br/> 定義1 '''部分列'''<br/> 自然数の集合NからNの中への狭義の単調増加関数 $n; N \to N $ を用いて(注参照)<br/> 数列 $(x_{n})_{n \in N}$ からつくる数列 $(x_{n(k)})_{k\in N}$ を、数列 $(x_{n})_{n \in N}$ の部分列という。<br/> (注)$n; N \to N $ が狭義単調増加とは、任意の自然数kと、それより大きい全ての自然数lに対して$n(k)\lt n(l)$ <br/><br/> 定理2<br/> 有界な数列 $(x_{n})_{n \in N}$ は、収束する部分列をもつ。<br/> 証明<br/> 数列が有界なので、2つの実数l,uが存在して、全ての自然数nに対し、<br/> $ x_n \in [l,u] $ <br/> 閉区間$I_0\triangleq [l,u] $ の中に、数列の無限個の項が含まれているので、<br/> この区間を2等分した区間のいずれかには、数列の無限個の項が含まれる。<br/> その区間を $I_1=[l_1,u_1]$ と書く。(注参照)<br/> すると この区間は $[l_1,u_1] \subset [l,u] \quad $,長さは $u_1-l_1=\frac{1}{2}(u-l)$ <br/> この区間 $I_1$ を2等分しても、いずれかの部分区間は、数列の無限の項を含む。<br/> そこでその部分区間を $I_2=[l_2,u_2]$ とする。 $I_2 \subset I_1$、$|I_2|=\frac{1}{2^2}(u-l)$ <br/> これを続けると閉区間の縮小列 $I_n=[l_n,u_n]$ を得る(n=1,2,3,4,,,,)。 すると、<br/> 数列 $\bigl(l_n \bigr)_{n\in N}$ は単調増加で有界な数列、<br/> 数列 $\bigl(u_n \bigr)_{n\in N}$ は単調減少で有界な数列、<br/> 定理1から、どちらの数列も収束する。<br/> しかも、$ 0 \lt u_n -l_n \lt \frac{1}{2^n}(u-l)$ なので<br/> それぞれの極限を $l_{\infty}$ ,$u_{\infty}$ とかくと、$l_{\infty} = u_{\infty}$ <br/> この点を $x_{\infty}$ とかく。<br/> ・最後に、$x_{\infty}$ に収束する、$(x_{n})_{n \in N}$ の部分列を選び出そう。<br/> 部分区間$I_1$ の中には数列$(x_{n})_{n \in N}$の無限の項があるので、その中で最小の項順$n(1)$を選び、部分列の初項$x_{n(1)}$ に選ぶ。<br/> $I_2$ には$I_1$のなかの数列$(x_{n})_{n \in N}$の項が無限に含まれるので、<br/> その中で、項順mが $n(1)\lt m$ を満たすものも無限にある。<br/> その中で最小の項順のものを選び、第2項 $x_{n(2)}$ とする。<br/> すると、$x_{n(2)} \in I_2 \quad n(1)\lt n(2) $<br/> これを繰り返すと任意の自然数iに対して<br/> $x_{n(i)} \in I_i $ であって、$n(i-1)\lt n(i)$ である,<br/> 数列$ \bigl( x_{n(i)}\bigr)_{i \in N}$を得る。<br/> この数列が元の数列の部分列であり、$\lim_{i \to \infty}x_{n(i)}= x_{\infty}$<br/>であることは明らかである。<br/> (注)2つの部分区間のどちらも無限個の項を含むときは、どちらの部分区間を採用してもよい。<br/><br/> 数列が収束するための条件を求めるためには、コーシー列という概念が必要になる。<br/> 定義<br/> 実数列$\bigl(x_{n}\bigr)_{n=1}^{\infty}$が'''コーシー列'''(または'''基本列''')とは<br/> 任意の$ \epsilon\gt 0$ に対して、$ n_0 \in N$ が存在して、<br/> $ m, n \geq n_0 (\in N )$ ならば $|x_{m}-x_{n}| \lt \epsilon $ となること。<br/> 定理3<br/> (1)実数列 $\bigl(x_n \bigr)_{n\in N}$ がコーシー列ならば、収束する。<br/> (2)逆に、$\bigl(x_n \bigr)_{n\in N}$ が収束するならば、コーシー列である。<br/> 証明<br/> (1)を証明する。<br/> ⅰ)$\bigl(x_n \bigr)_{n\in N}$ がコーシー列ならば、有界である。<br/> ∵ コーシー列なので、$ \epsilon = 1$ のとき、$ n_0 \in N$ が存在して、<br/> $ m \geq n_0 (\in N )$ ならば $|x_{m}-x_{n_0}| \lt 1 $ <br/> 故に、この数列の全ての項は、<br/> $l\triangleq min\{x_1,x_2,x_3,,,,x_{n_0}-1 \}$と$u\triangleq max\{x_1,x_2,x_3,,,,x_{n_0}+1 \}$ の間にある。<br/> ⅱ)$\bigl(x_n \bigr)_{n\in N}$ がコーシー列ならば、収束する。<br/> ∵ <br/> 数列がコーシー列なので,<br/> 任意の正数 $ \epsilon$ に対して、ある自然数 $n_0$ が存在して、<br/> $m, n \geq n_0$ ならば、$ |x_m-x_n| \lt \epsilon$<br/> また、コーシー列は有界なので、定理2から、収束する部分列 $(x_{n(k)})_{k\in N}$ を持つ。<br/> この極限値を $a$ とおくと、<br/> $n(k_0) \geq n_0$ を満たす或る番号 $k_0 $ が定まって、$ k \geq k_0$ なる任意のkに対して<br/> $|a - x_{n(k)}| \lt \epsilon $ <br/> すると任意の $n \bigl(\geq n(k_0)\bigr)$ に対して、<br/> $|a - x_n| \leq |a - x_{n(k_0)}|+ |x_{n(k_0)}-x_n| \lt 2\epsilon $<br/> 故に、元の数列は $a$ に収束する。<br/> (2)の証明は簡単なので、略す。 証明終わり。<br/><br/> 収束に関連するさらなる情報は下記を参照のこと。 *[[wikipedia_ja:極限 |ウィキペディア(極限)]] ==== 定理の応用;ネイピア数 e ==== 次の命題は、高等学校数学III/微分法(ウィキブックス)では証明せず利用しているものである。<br/><br/> '''命題'''<br/> 数列 $\{x_{n}\}_{n=1}^{\infty}\triangleq \{(1+\frac{1}{n})^{n}\}_{n=1}^{\infty}$ は、<br/> 2より大きく3より小さい実数 e に収束する。<br/> $\lim_{n\to \infty}(1+\frac{1}{n})^{n}= e$<br/> この e をネイピア数と呼ぶ。<br/><br/> 練習問題<br/> 上の命題を証明してください。<br/> ヒント;<br/> $(1+\frac{1}{n})^{n}$ を2項展開して、nとともに単調に増大すること、<br/> 常に2と3の間の実数であることを示せばよい。<br/><br/> 解答は、8.3 8章の付録の [[物理/8章の付録#問の解答|問の解答]] == 一変数の実数値関数とベクトル値関数の微分 == このテキストを理解するための必要最小限のことを記述する。<br/> 以下の文献も必要に応じて参考にしてください。<br/> 一冊では不十分なので色々あげておく。 *[[wikibooks_ja:高等学校数学II 微分・積分の考え|ウィキブックス(高等学校数学II 微分・積分の考え)]] *[[wikibooks_ja:高等学校数学III 微分法|ウィキブックス(高等学校数学III 微分法)]] *[[wikibooks_ja:物理数学I 解析学|ウィキブックス(物理数学I 解析学)]] *[[wikibooks_ja:物理数学I ベクトル解析|ウィキブックス(物理数学I ベクトル解析)]] === 実数値関数の微分 === 実数の開区間$I=(a,b)$上で定義された実数値関数$y=f(x)$を考える。<br/> 定義;微分可能性<br/> 関数$f$が$s\in I$で微分可能であるとは、極限<br/> $\lim_{h \to 0,h\neq 0}\frac{f(s+h)-f(s)}{h}=c \qquad \qquad (1)$<br/> が存在することである。<br/> この時$c$を$f$の$s$における微分係数あるいは導値といい、<br/> $f'(s)、\frac{df}{dt}(s)、(Df)(s)$<br/> などと書く。<br/> $I=(a,b)$の各点で$f$が微分可能であるとき、$f$は'''微分可能関数'''(あるいは 微分可能)という。<br/> この時、任意の$s\in I$に対して、$f'(s)\in I$が定まるので、<br/> 関数$f'$が定まる。これを$f$の${\bf 導関数}$(derivative)という。<br/> 命題<br/> 関数 $f$ が微分可能ならば、連続である。 ==== 微分係数の意味 ==== (1)$\frac{f(s+h)-f(s)}{h}$は、区間$[s,s+h]$における関数値の平均変化率である。<br/> その極限である微分係数$f'(s)$は、関数値の$s$における瞬間的な変化率と考えられる。<br/> (2)2次元空間(平面のこと)に直交座標座標系$O-xy$をいれ、<br/> 関数$y=f(x)$のグラフ$G=\{(x,y)\mid x\in I,y=f(x)\}$を書く。<br/> すると、<br/> $f'(s)$が存在することは、$x=s$においてグラフ$G$が接線をもつことと同等であり、<br/> 接線の方程式は<br/> $y=f'(s)(x-s)+f(s)$である。<br/> これは、[[wikipedia_ja:接線 |接線]]の定義からただちに分かる。<br/> (3)$h$を零に近づけていったときの極限の意味をさらに深めるため<br/> 微分可能の定義を、それと同等の別の表現に変換しよう。<br/> (1)式の右辺の定数を左辺に移行すると<br/> $\lim_{h \to 0,h\neq 0}\frac{f(s+h)-f(s)-ch}{h}=0$<br/> 次に、<br/> $o_{s}(h):=\frac{f(s+h)-f(s)-ch}{h}\qquad \qquad (2)$<br/> という、変数hの関数を定義する。<br/> すると関数$f$が$s\in I$で微分可能で、微分係数が$c$である必要十分条件は<br/> $\lim_{h \to 0,h\neq 0}o_{s}(h)=0$<br/> である。<br/> (2)式を変形すると<br/> $f(s+h)=f(s)+ch+o_{s}(h)h$<br/> ゆえに次の命題が証明できた。<br/> 命題;<br/> 次の3つの条件は同等である。<br/> 1)関数$f$は$s\in I$で微分可能で、微分係数は$c$である<br/> 2)関数$f$は、<br/> $f(s+h)=f(s)+ch+o_{s}(h)h \qquad \qquad (3)$<br/> と表現できる。<br/> ここで、$o_{s}(h)$は<br/> $\lim_{h \to 0,h\neq 0}o_{s}(h)=0 \qquad \qquad (4)$<br/> を満たす関数<br/><br/> 3) 関数$f$は、<br/> $s$の近傍の点$x$で $f(x)=f(s)+c(x-s)+\left(o_{s}(x-s)\right)(x-s) \qquad \qquad (3)$<br/> ここで、$o_{s}(x-s)$は<br/> $\lim_{x \to s,x\neq s}o_{s}(x-s)=0 \qquad \qquad (4)$<br/> を満たす関数<br/><br/> この定理の3)により、<br/> 「関数が$s$で微分可能であり、微分係数がcであること」は、<br/> 「この関数が$s$の近傍の点$x$で直線$y=f(s)+c(x-s)$で近似でき、<br/> 誤差$|f(x)-(f(s)+c(x-s))|=|\left(o_{s}(x-s)\right)(x-s)| $が,<br/> $x$を$s$に近づけていくとき、$h=x-s$より高次で0に収束する(注参照)<br/> ことと同等であることが分かる。<br/> (注)$\lim_{h\to 0,h\neq 0}\frac{o_{s}(h)h}{h}=0$ 命題の系;関数が$s$で微分可能であれば、$s$で連続である。<br/> 証明;命題の2)を用いると、<br/> $f(s+h)=f(s)+ch+o_{s}(h)h $<br/> この式から、$|f(s+h)-f(s)|=|(c+o_{s}(h))h|$<br/> $\lim_{h \to 0,h\neq 0}o_{s}(h)=0$なので$\lim_{h \to 0,h\neq 0}|(c+o_{s}(h))h|=0$。<br/> ゆえに、$\lim_{h \to 0,h\neq 0}|f(s+h)-f(s)|=0$<br/> これは、関数が$s$で連続であることの定義そのものである。 ==== 導関数の性質==== '''定理1(線形性)'''<br/> $f,g$が$I=(a,b)$上で定義された、微分可能な実数値関数で、 $\alpha,\beta$が任意の実数ならば<br/> $\alpha f+\beta g$、$fg(s):=f(s)g(s)$は微分可能で<br/> $(\alpha f+\beta g )'=\alpha f'+\beta g'$<br/><br/> 証明は、微分の定義式と極限の性質から容易に導ける。<br/> '''定理2 (積の導関数)'''<br/> 2つの関数$f,g$が微分可能ならば、それらの積 $fg$ も微分可能で<br/> $(fg)'=f'g+fg'$<br/> '''定理3(商の導関数)'''<br/> '''定理4 (合成関数の導関数)'''<br/> ==== 三角関数、指数関数の微分 ==== ==== 対数関数、逆三角関数の微分 ==== ==== 平均値の定理 ==== ===== ロールの定理 ===== ===== 平均値の定理 ===== ==== 高階導関数とテイラー展開==== ===== 高階導関数 ===== ===== テイラー展開とテイラーの定理 ===== [[wikibooks_ja:解析学基礎/テイラー級数|解析学基礎/テイラー級数(ウィキブックス)]] ==== $C^{1}$級の関数==== $I=(a,b)$上の関数 $f$ が連続的微分可能(continuously differentiable)であるとは,<br/> $I$上で導関数 $f'$ が存在して、しかも$f'$ が$I$上で連続であることをいう。<br/> $I=(a,b)$上で連続的微分可能である関数を$C^{1}$級関数という。<br/> === ベクトル値関数の微分=== 実数の開区間$I=(a,b)$上で定義され,n次元の実ベクトル($\in {\bf R^n}$)に 値をとる関数$\vec f$を考える。<br/> 定義;微分可能性<br/> 実数値関数の場合と同じである。<br/> 導関数の線形性の性質も成り立つ。<br/> ==== ベクトル値関数の微分とその成分関数の微分の関係==== 関数値$\vec f(s)$は${\bf R^n}$の要素なので<br/> $\vec f(s)=(f_1(s),f_2(s),\cdots f_n(s))$<br/> と表示できる。<br/> すると$\vec f$のn個の成分関数<br/> $f_i,(i=1,2,\cdots n)$<br/> が得られる。<br/> 命題;<br/> $\vec f$が$s\in I$で微分可能$\Leftrightarrow$$f_i(i=1,2,\cdots n)$が$s\in I$で微分可能。<br/> この時、${\vec f}'(s)=({f_1}'(s),{f_2}'(s)\cdots {f_n}'(s))$<br/> ==== ベクトル積の微分 ==== 命題<br/> $ \vec{a(t)} $ と $\vec{b(t)} $は、開区間I上で定義され、 微分可能なベクトル値関数とする。すると、<br/> $ \quad \vec{a(t)} \times \vec{b(t)}$ は微分可能で、<br/> $ \quad \frac{d}{dt}(\vec{a(t)} \times \vec{b(t)}) =(\frac{d}{dt}\vec{a(t)} )\times \vec{b(t)}+\vec{a(t)}\times (\frac{d}{dt}\vec{b(t)})$ 証明<br/> すでにこのテキストで紹介した、ベクトル値関数の微分の定義<br/> $ \quad \frac{d}{dt}(\vec{a(t)} \times \vec{b(t)}) =\lim_{\delta t \to 0} (\vec a(t+\delta t)\times \vec{b(t+\delta t)}- \vec{a(t)} \times \vec{b(t)})/\delta t$ $\qquad $ (1) <br/> を用いて証明する。<br/> この極限が存在し、<br/> $\frac{d}{dt}\vec{a(t)} \times \vec{b(t)}+\vec{a(t)}\times \frac{d}{dt}\vec{b(t)}$<br/> になることを示せば命題は証明できたことになる。<br/> 極限の計算が進むよう、右辺の式の分母は変形しよう。<br/> 関数の積の微分公式の証明と同じ技巧を用いる。<br/> $ \vec a(t+\delta t)\times \vec{b(t+\delta t)} - \vec{a(t)} \times \vec{b(t)}$ <br/> $ = \vec a(t+\delta t)\times \vec{b(t+\delta t)} -\vec a(t)\times \vec{b(t+\delta t)} +\vec a(t)\times \vec{b(t+\delta t)} - \vec{a(t)} \times \vec{b(t)}$ <br/> ベクトル積の命題3を利用すると、 <br/> $ = \left(\vec a\left(t+\delta t\right) -\vec a\left(t\right)\right) \times \vec b\left(t+\delta t\right) +\vec a\left(t\right)\times \left(\vec b\left(t+\delta t\right)- \vec b\left(t\right)\right) $ この式を式(1)の右辺の分子の項に代入し整頓すると<br/> $ \quad \frac{d}{dt}(\vec{a(t)} \times \vec{b(t)}) =\lim_{\delta t \to 0} \frac{\vec a(t+\delta t)\times \vec b(t+\delta t)- \vec a(t) \times \vec b(t)} {\delta t}$ <br/> $=\lim_{\delta t \to 0} \frac{\left(\vec a\left(t+\delta t\right) -\vec a\left(t\right)\right) \times \vec b\left(t+\delta t\right) +\vec a\left(t\right)\times \left(\vec b\left(t+\delta t\right)- \vec b\left(t\right)\right) } {\delta t} $ <br/> ベクトル積の命題4を使い、<br/> $=\lim_{\delta t \to 0}\left( \frac{\vec a(t+\delta t) -\vec a(t)}{\delta t} \times \vec b\left(t+\delta t\right) + \vec a(t)\times \frac{\vec b(t+\delta t)- \vec b(t)} {\delta t} \right)$ <br/> 極限の命題を使って、<br/> $=\lim_{\delta t \to 0} \frac{\vec a(t+\delta t) -\vec a(t)}{\delta t} \times \lim_{\delta t \to 0}\vec b(t+\delta t) + \vec a(t)\times \lim_{\delta t \to 0}\frac{\vec b(t+\delta t)- \vec b(t)}{\delta t} $ <br/> 式中の極限は、$\vec a,\vec b$が、微分可能なので存在し、 <br/> $\lim_{\delta t \to 0} \frac{\vec a(t+\delta t) -\vec a(t)}{\delta t} =\frac{d\vec a(t)}{dt}$ <br/> $\lim_{\delta t \to 0} \frac{\vec b(t+\delta t) -\vec b(t)}{\delta t} =\frac{d\vec b(t)}{dt}$ ==リーマン積分== この節は、区間上で定義された関数のリーマン積分の初歩を述べる。<br/> 具体的には、リーマン積分の定義とリーマン積分が存在する(可積分)条件<br/>について、数学的厳密性を保つように記述する。<br/> 参考記事 *[[Wikipedia_ja:リーマン積分 |ウィキペディア(リーマン積分)]] ===区間上の関数のリーマン和=== 区間$V=[a,b]$で定義され、実数に値をとる関数$y=f(x)$を考える。<br/> この区間の分割<br/> $\Delta=\{V_i=[x_{i-1},x_i] \mid i=1,2,,,n\},x_0=a,x_n=b$<br/> と、その代表点$\xi_i\in V_i(i=1,2,,,n)$に関する、$y=f(x)$のリーマン和とは、<br/> $I^{f,\Delta}(\xi_1,,,\xi_n)=$<br/> $\sum_i f(\xi_i)v(V_i)=\sum_i f(\xi_i)(x_i-x_{i-1})$ <br/> で定義する。<br/> ====リーマン和の意味 ==== リーマン和は、<br/> $y=f(x)$のグラフを、棒グラフで近似したときの<br/> 棒グラフの作る面積(各角柱の面積和)であることが分かる。図参照。<br/> $y=f(x)$のグラフとx軸、および2直線$x=a$、$x=b$で囲まれる部分の面積を近似している。<br/> ===リーマン可積分とリーマン積分の定義=== 分割を細かくしていくとき、<br/> 分割の仕方や代表点の選び方に関係なく<br/> リーマン和がある一定値に収束するとする。<br/> すると、この値は<br/> $y=f(x)$のグラフとx軸、および2直線$x=a$、$x=b$で囲まれる部分の面積<br/> と考えられる。<br/> 定義;<br/> '''$\Delta=\{V_i=[x_{i-1},x_i] \mid i=1,2,,,n\}$の大きさ$d(\Delta)$'''とは、<br/> この分割で得られた小区間の長さの、最大値で定義する。<br/> 記号で書くと<br/> $d(\Delta)=max\{x_{i}-x_{i-1} \mid i=1,2,,,n\}$<br/> '''定義;リーマン可積分'''<br/> $f$を、有界閉区間$V$上で定義され、実数の値をとる関数とする。<br/> もし、ある実数$I$が存在して、<br/> どんな分割$\Delta=\{V_i=[x_{i-1},x_i] \mid i=1,2,,,,n\} $と<br/> 代表点$\xi_i\in V_i(i=1,2,\cdots ,n)$であっても、<br/> $\lim_{d(\Delta) \to 0}I^{f,\Delta}(\xi_1,,,\xi_n)=I$<br/> が成り立つ時、<br/> $f$は$V$上で(リーマン)可積分であるという。<br/> このとき、$I$ を$f$の$V$上での'''リーマン積分'''といい、<br/> $I=\int_{V}f=\int_{V} f(x)dx$<br/> などと書く。<br/> === リーマン積分の命題 === 命題1 線形性<br/> 命題2 積分の単調性<br/> 命題3 平均値定理<br/> 命題4 三角不等式<br/> 命題5 積分区間に関する加法性<br/> === 可積分条件(RT;短縮化) === どのような関数は、積分できるだろうか。<br/> 積分出来ない関数はあるのか。<br/> これらについて考察しよう。<br/> ====不足リーマン和と過剰リーマン和によるリーマン和の評価==== リーマン和を、代表点の選び方を変えて求めるとその値は変化する。<br/> そこで、その最小値と最大値を求め、差を計算する。<br/> もしこの差が分割を細かくしていくと零に収束するならば、可積分となろう。<br/> 以下、この方針で議論を進める。<br/> $V$を分割して得られた小区間$V_i=[x_{i-1},x_i]$を考える。<br/> 関数$y=f(x)$をこの小区間上に限定した時、<br/> 関数は、この区間上の点で最大値と最小値をとると仮定する(注参照)。<br/> 関数の最大値$max\{f(x)\mid x\in V_i\}$と最小値$min\{f(x)\mid x\in V_i\}$を、 <br/> それぞれ、$m(f;V_i),M(f;V_i)$と書く。<br/> (注) 区間上で最大値、最小値を取らない関数では、<br/> [[wikipedia_ja:有界函数 |有界な関数]]でありさえすれば、最大値、最小値と殆ど同じ性質をもつ<br/> 上限、下限に置き換えれば以後の、議論は成り立つ。<br/><br/> すると、$V_i$の任意の点$\xi$ に対して、<br/> $m(f;V_i)\leq f(\xi) \leq M(f;V_i)$ <br/> 故に、<br/> '''補題1'''<br/> ⅰ)どのような代表点$\{\xi_i\}_{i}, (\xi_i \in V_i,i=1,2,,,n)$に対しても<br/> $I_{m}(f,\Delta):=I^{f,\Delta}(\xi_{1}^m,,,\xi_{n}^m) =\sum_i m(f;V_i)v(V_i)$<br/> $\leq I^{f,\Delta}(\xi_1,,,\xi_n)=\sum_i f(\xi_i)v(V_i)$<br/> $\leq \sum_i M(f;V_i)v(V_i) =I_{M}(f,\Delta)=I^{f,\Delta}(\xi_{1}^M,,,\xi_{n}^M) \qquad (1)$ <br/> そこで、$I_{m}(f,\Delta)$を'''$\Delta)$に関する$f$の'''不足リーマン和'''、$I_{M}(\Delta)$を'''過剰リーマン和'''と呼ぶ。<br/> ⅱ)$I_{m}(f,\Delta)=\min_{\xi_i \in V_i,i=1,2,,,n}I^{f,\Delta}(\xi_{1}^M,,,\xi_{n}^M)$ <br/> $I_{M}(f,\Delta)=\max_{\xi_i \in V_i,i=1,2,,,n}I^{f,\Delta}(\xi_{1}^M,,,\xi_{n}^M)$ <br/> 証明は明らかなので省略。<br/> ==== 分割の細分とリーマン和の評価式==== '''定義;分割の細分'''<br/> $V$の分割${\Delta}'$が分割$\Delta$の細分というのは、<br/> $\Delta$の分点の集合$\{x_0,x_1,,,,x_n\}$が、<br/> ${\Delta}'$の分点の集合$\{x'_0,x'_1,,,,x'_{n'}\}$に真に含まれることと定義する。<br/> 記号でかけば、$\{x_0,x_1,,,,x_n\}\subset \{x'_0,x'_1,,,,x'_{n'}\}, \{x_0,x_1,,,,x_n\}\neq \{x'_0,x'_1,,,,x'_{n'}\}$。<br/> 記号では、$\Delta \leq {\Delta}'$と記す。<br/><br/> '''補題2'''<br/> $\Delta \leq {\Delta}'$という分割に対し、<br/> $I_{m}(f,\Delta) \leq I_{m}(f,\Delta') \leq I_{M}(f,\Delta') \leq I_{M}(f,\Delta) \qquad (2)$ <br/> が成り立つ。 <br/> (証明)<br/> $\Delta$の小区間$V_i=[x_{i-1},x_i]$が分割${\Delta}'$では、<br/> $\{V'_j=[x_{i-1},x'_j],V'_{j+1}=[x'_j,x_i]\}$の2つに分割されたとする。<br/><br/> すると、区間上の関数の最大値と最小値の定義から、<br/> $m(f;V_i) \leq m(f;V'_j)$ $\quad m(f;V_i) \leq m(f;V'_{j+1})$<br/> $M(f;V_i) \geq M(f;V'_j)$ $\quad M(f;V_i) \geq M(f;V'_{j+1})$<br/> これらから、命題は成立することが分かる。<br/><br/> ==== 不足リーマン和の上限と過剰リーマン和の下限==== 補題2から、分割の細分を繰り返していくと、その分割に対応する、<br/> 不足リーマン和は、広義増加(増加するか、同じ値にとどまる)し、<br/> 過剰リーマン和は、広義減少する。<br/> 分割を細かくしていったとき、これらの極限が一致すれば、補題1から、<br/> リーマン和の極限値は、代表点に無関係に、定まることになる。<br/> そこで色々な分割に対応する不足リーマン和のなかの最大値と<br/> 過剰リーマン和の最小値を求めることが、重要になる。<br/> しかし一般にはこれらは存在しないことが示せる。<br/> そこで最大値に近い命題を持つ上限と最小値に近い下限という概念を利用する。<br/> ==== 2つの分割の共通の細分 ==== 分割$\Delta$の分点の集合$\{x_j \mid j=1,2,,,m\}$と、<br/> 分割${\Delta}'$ の分点の集合$\{x'_j \mid j=1,2,,,n\}$の<br/> 和集合$\{x_j \mid j=1,2,,,m\} \cup \{x'_j \mid j=1,2,,,n\}$を分点とする分割を$\Delta \vee {\Delta}'$と書く。<br/> すると新しい分割は<br/> $\Delta \leq \Delta\vee {\Delta}' \qquad $ と ${\Delta}' \leq \Delta\vee {\Delta}' \quad $<br/> を満たす。<br/> これを用いると、<br/> 不足リーマン和の上限$\mathscr{s}(f)$と<br/> 過剰リーマン和の下限$\mathscr{S}(f)$が存在することが証明できる。<br/> 補題5<br/> $f$を区間$V=[a,b]$で定義され実数値をとる有界関数<br/> すなわち、$\{f(x)\mid x\in V\}$が${\bf R}$の有界部分集合となる関数とする。<br/> $V=[a,b]$の分割を全て集めて作った集合を$\mathscr{D}(V)$と書く。<br/> すると、<br/> ⅰ)任意の$\Delta,{\Delta}'\in \mathscr{D}(V)$に対して、<br/> $I_m(f,\Delta) \leq I_M(f,{\Delta)}')$<br/> ⅱ)集合$\{I_m(f,\Delta) \mid \Delta \in \mathscr{D}(V)\}$は上に有界、<br/> 集合$\{I_M(f,\Delta) \mid \Delta \in \mathscr{D}(V)\}$は下に有界<br/> ⅲ)$\mathscr{s}(f):=\sup\{I_m(f,\Delta) \mid \Delta \in \mathscr{D}(V)\}$と <br/> $\mathscr{S}(f):=\inf\{I_M(f,\Delta) \mid \Delta \in \mathscr{D}(V)\}$は存在し、<br/> $\mathscr{s}(f) \leq \mathscr{S}(f)$ <br/> 証明;<br/> ⅰ)$\Delta \leq \Delta\vee {\Delta}'$ なので、補題2から、<br/> $I_m(f,\Delta) \leq I_m(f,\Delta\vee {\Delta}') \leq I_M(f,\Delta\vee {\Delta}') \leq I_M(f,{\Delta}') $<br/> ⅱ)1)で証明した不等式で、分割${\Delta}'$ は固定する。<br/> すると全ての分割 $\Delta$に対して、$I_m(f,\Delta) \leq I_M(f,{\Delta)}')$なので<br/> 集合$\{I_m(f,\Delta) \mid \Delta \in \mathscr{D}(V)\}$は、上界$I_M(f,{\Delta)}')$を持ち、上に有界である。<br/> 後者も同様にして下に有界であることが示せる。<br/> ⅲ)従って、実数の連続性の公理から、<br/> 集合$\{I_m(f,\Delta) \mid \Delta \in \mathscr{D}(V)\}$は上限$\mathscr{s}(f)$をもち、<br/> 集合$\{I_M(f,\Delta) \mid \Delta \in \mathscr{D}(V)\}$は下限$\mathscr{S}(f)$をもつ。<br/> 上限は、上界の中の最小値なので、<br/> $\mathscr{s}(f)\leq I_M(f,{\Delta}')$<br/> この式は任意の${\Delta}'$について成立するので、<br/> $\mathscr{s}(f)$は、集合$\{I_M(f,\Delta) \mid \Delta \in \mathscr{D}(V)\}$の下界である。<br/> 下限$\mathscr{S}(f)$は、下界のなかの最大値なので$\mathscr{s}(f) \leq \mathscr{S}(f)$を得る。<br/> ==== 分割を細かくしていくときの不足リーマン和と、過剰リーマン和の極限==== 定理(ダルブー;Darboux)<br/> $V=[a,b]$<br/> $f$を、$V$で定義され、実数に値を取る有界関数とする。<br/> このとき、<br/> ⅰ)$\lim_{d(\Delta) \to 0}I_m(f,\Delta)=\mathscr{s}(f)$<br/> ⅱ)$\lim_{d(\Delta) \to 0}I_M(f,\Delta)=\mathscr{S}(f)$<br/> 証明;<br/> ⅰ)を示す。( ⅱ)は同じようにして証明できるので略す)<br/> これを示すには、<br/> どんなに小さい正の実数$\epsilon$に対しても、それに応じた小さい正の実数$\delta_{\epsilon}$を適切に選べば、<br/> 分割の大きさが$\delta_{\epsilon}$より小さい、どんな分割$\Delta$も、<br/> $\mathscr{s}(f)-I_m(f,\Delta)<\epsilon$<br/> であることを示せばよい。<br/> 以下に、数段階に分けて、これを証明する。<br/> $\quad 1)<br/> $上限の命題(補題3)から、<br/> ある分割<br/> $D=\{{V^D}_i=[{x^D}_{i-1},{x^D}_i] \mid i=1,2,,,n\}in \mathscr{D}(V)$<br/> が存在して、<br/> $\mathscr{s}(f)-I_m(f,D)<\frac{\epsilon}{2} \qquad (1)$<br/> 今後この$D$を使って、証明を進める。<br/> $\quad 2)$<br/> 分割$D$の小区間${V^D}_i$の長さ$({x^D}_i-{x^D}_{i-1})(i=1,2,,,n)$の 最小値を$e$とおくと<br/> $e=min_{i=1}^{n}({x^D}_i-{x^D}_{i-1})$ <br/> $e$に比べて非常に小さい大きさを持つ分割、<br/> $\Delta=\{V^{\Delta}_i=[{x^{\Delta}}_{i-1},{x^{\Delta}}_i] \mid i=1,2,,,N\}$、 <br/> $d(\Delta)=max_{i=1,2,,,N}({x^{\Delta}}_i-{x^{\Delta}}_{i-1}) \ll e$<br/> <br/> を考える。<br/> もし、$D \leq \Delta$ならば補題2より、<br/> $I_m(f,D) \leq I_m(f,\Delta)$、<br/> すると$\mathscr{s}(f)-I_m(f,\Delta)\leq \mathscr{s}(f)-I_m(f,D) \leq \frac{\epsilon}{2}\leq \epsilon$ <br/> 通常、分割$\Delta$は、$D$の細分になっていない。<br/> この場合は、高々(n-1)個の$\Delta$の小区間が、$D$の小区間には含まれず、<br/> $D$の分点${x^D}_i(i=1,2,,,n-1)$をまたぐことになる。図参照のこと。<br/> 議論を簡単にするため、<br/> $D$の分点${x^D}_i(i=1,2,,,n-1)$が全て、$\Delta$の小区間によって跨がれている<br/>と仮定し、議論を進める。<br/> 他のケースでも、証明はおなじようにできるので、<br/> このように仮定しても何の問題も起こらない。<br/> $D$の分点${x^D}_i$を跨ぐ$\Delta$の小区間を$V^{\Delta}_{m_i}$とする(i=1,2,,,n-1)。<br/> $\quad 3)$ <br/> 2つの分割$D、\Delta$から${\Delta}':=D \vee \Delta$を作る。<br/> すると<br/> ${\Delta}'=\{V^{\Delta}_1,V^{\Delta}_2,,,,,,,,,V^{\Delta}_{m_{1}-1},$<br/> $\qquad \quad [x^{\Delta}_{m_{1}-1},x^{D}_1],[x^{D}_1,x^{\Delta}_{m_{1}}],$<br/> $\qquad \quad V^{\Delta}_{m_{1}+1},V^{\Delta}_{m_{1}+2},,,,,,,,,V^{\Delta}_{m_{2}-1},$<br/> $\qquad \quad [x^{\Delta}_{m_{2}-1},x^{D}_2],[x^{D}_2,x^{\Delta}_{m_{2}}],$<br/> $\qquad \quad V^{\Delta}_{m_{2}+1},V^{\Delta}_{m_{2}+2},,,V^{\Delta}_{m_{3}-1},$<br/><br/> $\qquad \quad ,,,,,,,,,$<br/><br/> $\qquad \quad V^{\Delta}_{m_{n-1}+1},V^{\Delta}_{m_{n-1}+2},,,,,,,,,V^{\Delta}_N\} \qquad (2)$<br/> と書ける。<br/> $\Delta \leq {\Delta}'$で、 $D \leq {\Delta}'$ なので、<br/> $I_m(f,\Delta) \leq I_m(f,{\Delta}')$, $\quad I_m(f,D) \leq I_m(f,{\Delta}')$<br/> 後者の式から、<br/> $0 \leq \mathscr{s}(f)-I_m(f,{\Delta}') \leq \mathscr{s}(f)-I_m(f,D)$<br/> この式と(1)式から、<br/> $0 \leq \mathscr{s}(f)-I_m(f,{\Delta}')<\frac{\epsilon}{2}$<br/> そこで、<br/> 「$d(\Delta) \to 0 $ならば、$I_m(f,{\Delta}')-I_m(f,\Delta)<\frac{\epsilon}{2}$ <br/> が示せれば、<br/> $0 \leq \mathscr{s}(f)-I_m(f,\Delta)$<br/> $=(\mathscr{s}(f)-I_m(f,{\Delta}')+(I_m(f,{\Delta}'-I_m(f,\Delta)\leq \epsilon$<br/> が示され、証明が終わる。<br/> $\quad 4)$ <br/> $I_{m}(f,\Delta)=\sum_{i=1}^{N} m(f;V^{\Delta}_i)v(V^{\Delta}_i)$ であり、<br/> (2)式から、<br/> $I_m(f,{\Delta}')$<br/> $=\sum_{i\notin \{m_1,m_2,,,,m_{n-1}\}} m(f;V^{\Delta}_i)v(V^{\Delta}_i)$<br/> $+\sum_{k=1}^{n-1} m(f;[x^{\Delta}_{m_{k}-1},x^{D}_k])v([x^{\Delta}_{m_{k}-1},x^{D}_k])$<br/> $+\sum_{k=1}^{n-1} m(f;[x^{D}_k,x^{\Delta}_{m_{k}}])v([x^{D}_k,x^{\Delta}_{m_{k}}])$<br/> なので、<br/> $I_m(f,{\Delta}')-I_m(f,\Delta)$<br/> $=\sum_{k=1}^{n-1} m(f;[x^{\Delta}_{m_{k}-1},x^{D}_k])v([x^{\Delta}_{m_{k}-1},x^{D}_k])$<br/> $+\sum_{k=1}^{n-1} m(f;[x^{D}_k,x^{\Delta}_{m_{k}}])v([x^{D}_k,x^{\Delta}_{m_{k}}])$<br/> $-\sum_{i\in \{m_1,m_2,,,,m_{n-1}\}} m(f;V^{\Delta}_i)v(V^{\Delta}_i)$<br/> 関数は$V$上で有界なので、適切に正の実数$M$を選ぶと、$x$が$V$の要素ならば<br/> $|f(x)|\leq M$が成立する。<br/> すると$|m(f;[x^{\Delta}_{m_{k}-1},x^{D}_k])|, |m(f;[x^{D}_k,x^{\Delta}_{m_{k}}])| \leq M$<br/> が成り立つ。また<br/> $v(V^{\Delta}_{m_k}) =v([x^{\Delta}_{m_{k}-1},x^{D}_k])+v([x^{D}_k,x^{\Delta}_{m_{k}}])$で、<br/> $v(V^{\Delta}_i)\leq d(\Delta) $<br/> なので<br/> $|I_m(f,{\Delta}')-I_m(f,\Delta)|\leq 2M\sum_{i\in \{m_1,m_2,,,,m_{n-1}\}} v(V^{\Delta}_i)\leq 2M(n-1)d(\Delta)$<br/> そこで、<br/> $\delta_{\epsilon}=\frac{\epsilon}{4Mn}$ と選べば、<br/> $d(\Delta)\leq \delta_{\epsilon}$をみたすどのような分割$\Delta$も、<br/> $0\leq I_m(f,{\Delta}')-I_m(f,\Delta)|\leq \frac{\epsilon}{2}$<br/> を満たすことが証明できた。証明終わり。<br/> ==== 可積分条件==== 定理;可積分条件 <br/> $V=[a,b]$<br/> $f$を、$V$で定義され、実数に値を取る有界関数とする。<br/> 次の条件のうち1つが成立すれば、残り2つは成立する(互いに同値という)。<br/> ⅰ)$f$は$V$上で(リーマン)可積分<br/> ⅱ)$\lim_{d(\Delta) \to 0}(I_M(f,\Delta)-I_m(f,\Delta))=0$<br/> ⅲ)$\mathscr{S}(f)=\mathscr{s}(f)$<br/> <br/> 証明<br/> ⅰ)を仮定する。ⅱ)が成立することを示そう。<br/> $f$の積分値を$\alpha$とおくと、可積分の定義から、<br/> 任意の$\epsilon>0$に対して、$\delta>0$が存在して、<br/> $d(\Delta)<\delta$である任意の分割と、その分割の任意の代表点$\xi_i,(i=1,2,,,)$に対し,<br/> $|I^{f,\Delta}(\xi_1,,,\xi_n)-\alpha |<\frac{1}{2}\epsilon$<br/> が成立する。<br/> 変形すると<br/> $\alpha-\frac{1}{2}\epsilon <I^{f,\Delta}(\xi_1,,,\xi_n) <\alpha+\frac{1}{2}\epsilon \qquad (1) $<br/> ここで、補題1のⅱ)から、<br/> $\inf_{\{\xi_i\}}I^{f,\Delta}(\xi_1,,,\xi_n) =I_{m}(f,\Delta)$<br/> $\sup_{\{\xi_i\}}I^{f,\Delta}(\xi_1,,,\xi_n) =I_{M}(f,\Delta)$<br/> なので、<br/> (1)式から、<br/> $\alpha-\frac{1}{2}\epsilon \leq I_{m}(f,\Delta) \leq I_{M}(f,\Delta) \leq \alpha+\frac{1}{2}\epsilon$<br/> これより、任意の$\epsilon>0$に対して、$\delta>0$が存在して、<br/> $d(\Delta)<\delta \implies (0\leq I_{M}(f,\Delta)-I_{m}(f,\Delta)\leq \epsilon)$<br/> ⅱ)が示せた。<br/> ⅱ)を仮定する。 ⅲ)が成り立つことを示す。<br/> $I_{m}(f,\Delta) \leq \mathscr{s}(f):=\sup_{\Delta}I_{m}(f,\Delta) \leq \mathscr{S}(f):=\inf_{\Delta}I_{M}(f,\Delta) \leq I_{M}(f,\Delta)$<br/> なので、<br/> $0 \leq \mathscr{S}(f)-\mathscr{s}(f) \leq I_{M}(f,\Delta)-I_{m}(f,\Delta)$<br/> 故に、分割を細かくしていき、極限をとると、<br/> $0 \leq \mathscr{S}(f)-\mathscr{s}(f) \leq \lim_{d(\Delta)\to 0}(I_{M}(f,\Delta)-I_{m}(f,\Delta))$<br/> ⅱ)が成立するので、<br/> $=0$<br/> ⅲ)が示せた。<br/> ⅲ)を仮定する。 $\alpha=\mathscr{S}(f)=\mathscr{s}(f)$とおく。<br/> ⅰ)が成り立つことを示そう。<br/> 補題1のⅰ)から、どのような分割$\Delta$と、その代表点$\{\xi_i\}_{i}, (\xi_i \in V_i,i=1,2,,,n)$に対しても<br/> $I_{m}(f,\Delta) \leq I^{f,\Delta}(\xi_1,,,\xi_n) \leq I_{M}(f,\Delta)$<br/> ここで、ダルブーの定理から、<br/> $\lim_{d(\Delta) \to 0}I_{m}(f,\Delta)=\mathscr{s}(f)=\alpha$,<br/> $\lim_{d(\Delta) \to 0}I_{M}(f,\Delta)=\mathscr{S}(f)=\alpha$<br/> が成り立つので、<br/> $\lim_{d(\Delta) \to 0}I^{f,\Delta}(\xi_1,,,\xi_n)=\alpha$ <br/> が成り立つ。<br/> ⅰ)が示せた。<br/> ==== 区分的に連続(有限個の点を除いて連続)な閉区間上の関数は積分可能==== 色々な関数のグラフを書くとつながっているところを、跳んでいるところが出来る。<br/> $y=X$のグラフはずっとつながっている。<br/> 関数$y=f(x)$を、<br/> $x<0$のとき $f(x)=0$, $0\leq x$のとき $f(x)=1$ <br/> で定義すると、<br/> $x=0$のところでそのグラフは跳んでいる。<br/> 連続や不連続は関数の非常に重要な性質であり、<br/> それを調べることはとても豊かな知識をもたらす。<br/> 定理 <br/> 有界閉区間上$V=[a,b]$で定義され、実数に値を取る連続関数$f$は、V上で可積分である。<br/> 略証;<br/> 有界閉区間上の連続関数は[[wikipedia_ja:一様連続 |一様連続]]なので、<br/> 任意の$\epsilon>0$に対して、$\delta>0$が存在して、<br/> $|x-x'|\leq \delta$を満たす$V$の任意の2点に対して、<br/> $|f(x)-f(x')|< \frac{\epsilon}{b-a}$<br/> が成立する。<br/> $V=[a,b]$の分割$\Delta$を細かくして、<br/> $d(\Delta)<\delta$<br/> を満たすようにする。<br/> すると、その分割によって得られた小区間$V_i(i=1,2,,,n)$の長さは、<br/> 全て$\delta$より小さくなるので、<br/> $\sup \{f(x)\mid x\in V_i\}-\inf\{f(x)\mid x\in V_i\}<\frac{\epsilon}{b-a}$<br/> $M(f;V_i),m(f;V_i)$の定義から<br/> $M(f;V_i)-m(f;V_i)<\frac{\epsilon}{b-a}, (i=1,2,,,n)$ これを用いると、<br/> $I_M(f,\Delta)-I_m(f,\Delta)=\sum_{i=1}^{n} M(f;V_i)v(V_i)-\sum_i m(f;V_i)v(V_i)$<br/> $=\sum_i(M(f;V_i)- m(f;V_i))v(V_i) \leq \sum_i \frac{\epsilon}{b-a}v(V_i) =\frac{\epsilon}{b-a}\sum_{i=1}^{n}v(V_i) =\frac{\epsilon}{b-a}(b-a) =\epsilon$<br/> 故に、<br/> 任意の$\epsilon>0$に対して、$\delta>0$が存在して、<br/> $d(\Delta)<\delta$を満たす任意の分割$\Delta$にたいして、<br/> $I_M(f,\Delta)-I_m(f,\Delta)\leq \epsilon$が示せた。<br/> $\mathscr{S}(f)-\mathscr{s}(f)\leq I_M(f,\Delta)-I_m(f,\Delta)$<br/> なので<br/> $\mathscr{S}(f)-\mathscr{s}(f)\leq \epsilon$<br/> が任意の$\epsilon>0$にたいして成立する。故に<br/> $\mathscr{S}(f)=\mathscr{s}(f)$<br/> 可積分条件のⅲ)が示せた。証明終わり。<br/><br/> 定理の系;有界閉区間上で定義され、区分的に連続な(有限個の不連続点をもつ)実数値関数$f$は積分可能である。<br/> 証明は容易なので略す。 ==== ベクトル値関数の場合 ==== ベクトル値関数$\vec f$の場合も、リーマン和とリーマン可積分の定義は実数値関数の場合と変わらない。<br/> 可積分条件については、<br/> 座標系をいれ、関数の各座標成分$\vec{f}_x,\vec{f}_y,\vec{f}_z$を考える。ここで、$\vec{f}_x(t):=\vec{f}(t)_x$である。他も同様。<br/> すると区分的連続なベクトル値関数の各成分は区分的連続なので積分可能となり、<br/> $\vec f$の積分可能性が示せる。<br/> == リーマン積分の性質 == 命題1 線形性<br/> 命題2 積分の単調性<br/> 命題3 平均値定理<br/> 命題4 三角不等式<br/> 命題5 積分区間に関する加法性<br/> === リーマン積分の計算法 === ==== 原始関数を用いるリーマン積分の計算 ==== ==== 一変数関数の変数変換 ==== ===== 積分計算を便利にする記号法 ===== ==== 部分積分法==== 未完 ==== 不定積分の計算法==== 未完
物理/解析学入門(1)実数の性質、連続関数、導関数と微分
に戻る。
表示
本文
トーク
ソースを表示
履歴
個人用ツール
ログイン
案内
メインページ
コミュニティ・ポータル
最近の出来事
最近の更新
おまかせ表示
ヘルプ
検索
ツールボックス
リンク元
関連ページの更新状況
特別ページ一覧