線形計画法(生産計画)
提供: Internet Web School
(版間での差分)
15 行: | 15 行: | ||
さらに各製品生産量は負ではないから | さらに各製品生産量は負ではないから | ||
+ | |||
<math> | <math> | ||
0 \leq x_1,0 \leq x_2,0 \leq x_3 \qquad (2) | 0 \leq x_1,0 \leq x_2,0 \leq x_3 \qquad (2) | ||
20 行: | 21 行: | ||
この制約条件のもとに | この制約条件のもとに | ||
+ | |||
<math> | <math> | ||
L\left(x_1,x_2, x_3 \right)=80x_1+110x_2+95x_3 \qquad (3) | L\left(x_1,x_2, x_3 \right)=80x_1+110x_2+95x_3 \qquad (3) | ||
</math> | </math> | ||
+ | |||
を最大にする<math>x_1,x_2, x_3</math>を求めよ. | を最大にする<math>x_1,x_2, x_3</math>を求めよ. | ||
2020年11月21日 (土) 14:56時点における版
(生産計画)
ある企業では製品A,B,Cを原料Ⅰ,Ⅱ,Ⅲ,Ⅳ用いて生産している. 製品A,B,C の1単位当たり利益をそれぞれ80,110,95とする. また, 製品A,B,Cを1単位生産するのに必要な原料Ⅰ,Ⅱ,Ⅲ,Ⅳのそれぞれ量と使用可能な上限が次の表で与えられる. これらの条件のもとに,利益を最大にするには製品A,B,Cをそれぞれ,どれだけ生産すれば良いか?.
この問題は以下のように数学的に定式化される 製品A,B,Cをそれぞれ\(x_1,x_2,x_3\) 単位生産するとき\(x_1,x_2,x_3\)は以下の不等式を満たす.
\( 4x_1+0x_2+7x_3 \leq 90 \\ 1x_1+3x_2+9x_3 \leq 60 \\ 6x_1+0x_2+14x_3 \leq 110 \\ 4x_1+10x_2+1x_3 \leq 75 \qquad (1) \)
さらに各製品生産量は負ではないから
\( 0 \leq x_1,0 \leq x_2,0 \leq x_3 \qquad (2) \)
この制約条件のもとに
\( L\left(x_1,x_2, x_3 \right)=80x_1+110x_2+95x_3 \qquad (3) \)
を最大にする\(x_1,x_2, x_3\)を求めよ.
\((1)\)式のように変数に関する制約条件式が1次式で与えられ,
\((3)\)式のように評価関数も1次式で与えられる問題は線形計画と呼ばれる.