整数問題
提供: Internet Web School
(版間での差分)
24 行: | 24 行: | ||
<math> | <math> | ||
- | x_1,x_2,x_3 \in \bf {N} , | + | x_1,x_2,x_3 \in \bf{N} , |
0 \leq x_1,0 \leq x_2,0 \leq x_3 \qquad (2) | 0 \leq x_1,0 \leq x_2,0 \leq x_3 \qquad (2) | ||
</math> | </math> |
2020年11月22日 (日) 09:07時点における版
整数計画
生産計画で述べた条件と全く同様に,企業では製品A,B,Cを原料Ⅰ,Ⅱ,Ⅲ,Ⅳ用いて生産している. 製品A,B,C の1単位当たり利益をそれぞれ80,110,95とする. また, 製品A,B,Cを1単位生産するのに必要な原料Ⅰ,Ⅱ,Ⅲ,Ⅳのそれぞれ量と使用可能な上限が次の表で与えられる. これらの条件のもとに,利益を最大にするには製品A,B,Cをそれぞれ,どれだけ生産すれば良いか?. ただし,生産量は整数値でなければならない。
この問題は以下のように数学的に定式化される.
整数計画法
製品A,B,Cをそれぞれx1,x2,x3 単位生産するときx1,x2,x3は以下の不等式を満たす.
4x1+0x2+7x3≤901x1+3x2+9x3≤606x1+0x2+14x3≤1104x1+10x2+1x3≤75 (1)
x1,x2,x3∈N,0≤x1,0≤x2,0≤x3(2)
この制約条件のもとに
L(x1,x2,x3)=80x1+110x2+95x3(3)
を最大にするx1,x2,x3を求めよ.
この問題を解くのにはMicrosoft Excelのソルバーや フリーソフトのOpen Office で提供されるソルバーと同等の機能をもつソフトを用いることができる.
この問題のMicrosoft Excelのソルバーによる解法例を示す。 ファイル:整数計画.pdf