物理/電流と磁界

提供: Internet Web School

(版間での差分)
(解説)
(5.1 静電気と電場)
1 行: 1 行:
-
=5.1 静電気と電場 =
+
= 解説 =
 +
==電流と磁界==
 +
この節では静止した電荷でなく動く電荷の性質をしらべる。
 +
===電流===
 +
電荷の流れを電流という。      <br/>
 +
多くの場合は、導体中の自由電子が動いて電流となる。<br/>
 +
[[wikipedia_ja:電解液|電解液(イオン溶液ともいう)]]では、正負のイオンが動いて電流となる。<br/>
 +
電流によって電荷は移動し、後に学ぶように、磁界を発生する。
 +
====直流電流・電圧と交流電流・電圧====
 +
時間がたっても向きも大きさも変化しない、電流のことを(狭義の)直流電流、電圧のことを(狭義の)直流電圧という。単に方向だけを変えない電流を(広義の)直流電流、同じく電圧を、(広義の)直流電圧という。<br/>これに反して、時間とともに方向を変える、電流、電圧を、それぞれ、(広義の)交流電流、交流電圧という。さらにその大きさが、時間とともに三角関数にしたがって変化する時、(狭義の)交流電流、交流電圧という。以下を参照のこと。
 +
*[[wikipedia_ja:直流|直流]]
 +
*[[wikipedia_ja:交流|交流]]
-
== 電磁気現象の根源 ==
+
====電流の向きと大きさの単位====
 +
電流の向きは、正の電荷の流れる向きと定める。<br/>
 +
電子が移動する電流のばあい、電流の向きとは逆に電子は動いている。<br/>
 +
電流の大きさ(略して電流)は、平行電流が及ぼしあう力(後に学ぶ)によって定められ、アンペア[A]という単位でよばれる。
 +
*[[wikipedia_ja:アンペア|ウィキペディア(アンペア)]]
-
詳しいことは次章で学ぶが、物質をつくっている原子は、原子核とその周りを回る電子から出来ている。<br />原子核はいくつかの陽子と中性子からできている。 <br />
+
===電流が作る磁界===
-
陽子は正の電荷+eをもち、電子はこれと同じ大きさで符号が反対の負の電荷-eを持つ。<br />
+
電流は磁界をつくる。エルステッドは1820年に電流は方位磁針を動かす磁界を作り出すことを発見。
-
電子の個数は陽子と同数であり、原子を離れて眺めると、正負の電荷が打ち消しあって電気を持たないように見える。<br />
+
本節では電流は直流電流に限定する。ゆっくりと変動する電流にたいしても、近似的に同様の性質が成り立つ。
-
電荷の間には電気力が働く。同符号の電荷は互いに反発し、異符号の電荷は互いに引き合う。  <br />
+
-
原子核と電子は引き合い、原子を作っている。また近くの原子同士も電気力で引き合い分子をつくり、気体や液体、固体をつくる。<br />
+
-
帯電、静電気、磁石、電流、電磁波など、すべての電磁気現象は、電子と陽子の存在と運動によって生じる。 <br />
+
-
この章と次章でこれらの電磁気現象とその法則について学ぶ。    <br />
+
-
(注)電荷の正負について:陽子どうし、電子どうしは反発するが、陽子と電子は引き合う。従って陽子と電子はことなった電荷である。さらに陽子と電子の個数が同じだと離れた所からみると、打ち消し合って電荷がないようにみえる。このため一方の電荷に+、他方にーをつけて扱うと大変具合が良い。そこで正、負の電荷として両者をあつかうのである。どちらにーをあててもよかったが歴史的に電子にーをあてた。<br />なお、原子核のなかで電気的に反発する複数の陽子がくっついているのは、反発力より強い核力で引き合っているため(後で学ぶ)。
+
-
== 静電気==
+
====無限に長い直線導線に電流Iを流す時にできる磁界$ \vec{H} $ ====
-
この節では、まず、静止した電荷(静電気という)の性質を学ぶ。
+
実験によると、任意の点Pの磁界$ \vec{H(P)} $ は、大きさは、電流の大きさ I に比例、電流からP点までの距離 r に反比例し、向きは、導線とP点を含む平面に直角で、右ねじの進行方向を電流の方向と一致させたときの、ねじの回転する方向である。
-
=== 帯電と電気素量===
+
====アンペールの研究 ====
-
原子は正負等しい電荷をもつので、離れた所から観測すれば、正と負の電荷が打ち消しあって,電荷をもたない。<br />
+
[[wikipedia_ja:アンドレ=マリ・アンペール|アンペール]]は、詳しい実験と考察により、任意の形状の電流の作る磁界に関するアンペールの法則を明らかにした。
-
物質は、原子から出来ているので、通常は電荷を持たない。<br />
+
<br/>
-
物質が電子をいくつか失ったり、獲得すると、物質は電荷を帯びる。'''帯電'''するという。<br />
+
この過程で、実験により、次の重要な原理を発見した。
-
したがって全ての物質の電荷量は e の整数倍である。e を'''電気素量'''という。
+
=====磁界の重ね合わせの原理=====
-
==== 点電荷====
+
電流$ I_1$ がP点に作る作る磁界を$ \vec{H_1(P)}$,電流$ I_2$ がP点に作る作る磁界を$ \vec{H_2(P)}$ とすると、<br/>
-
大きさの無視できる小さな電荷を'''点電荷'''という。
+
2つの電流$ I_1$と $ I_2$ が同時に流れた時にP点に作る作る磁界は$ \vec{H_1(P)}+\vec{H_2(P)}$
-
==== 電荷の単位====
+
=====環状の電流は磁石のようにふるまう=====
-
電荷の単位は、'''クーロン'''([C])とよばれ、電流を利用して決められる。
+
電流が流れている環状の線が作る磁場は、環の大きさに比べて十分離れたところでは、この環を縁とする板磁石のつくる磁界と同じになる。
-
*[[wikipedia_ja:クーロン|ウィキペディア(クーロン)]]
+
-
電気素量は、$ e = 1.6\times 10^{-19}[C] $
+
-
==== 電子の電荷、質量、半径 ====
+
====アンペールの法則====
-
*[[wikipedia_ja:電子|ウィキペディア(電子)]]
+
アンペールは,実験で明らかにした以上の事実から、次のような重要な法則を導いた。
 +
*[[wikipedia_ja:アンペールの法則|ウィキペディア(アンペールの法則)]]
 +
この記述中の「閉じた経路にそって磁場の大きさを足し合わせ」た値は、この経路にそって1Wbの磁荷を一周するとき磁荷が磁界から受ける仕事と同じ値である。<br/>
 +
この値がこの閉路を貫く電流 I に等しくなる、というのがアンペールの法則である。 <br/>
 +
この電流 I の向きは、電流の向きに進む右ねじの回転方向が、磁荷が閉路を一周するときの回転方向と一致するように定める。<br/>
 +
なお、アンペールの法則の導出は少し難しいので、高校では扱わない。
-
==== 電荷保存の法則====
+
====アンペールの法則の応用====
-
電荷は消滅も生成もしないことが、経験によって確かめられている。これを'''電荷保存法則'''という。
+
アンペールの法則を用いると、対称性をもついろいろな電流の作る磁界が、実験をしなくても、数式の計算だけで求められる。<br/>
-
*[[wikipedia_ja:電荷保存則|ウィキペディア(電荷保存の法則)]]
+
-
==== 導体、不導体、半導体====
+
===== 無限に長い直線導線に電流Iを流す時にできる磁界$ \vec{H} $ =====
-
導体(電気伝導体ともいう); [[Wikipedia_ja:電気伝導体|ウィキペディア(電気伝導体)]]  <br/>
+
直線電流から無限に離れた点の磁界は零と仮定してよい。
-
不導体(絶縁体ともいう); [[Wikipedia_ja:絶縁体|ウィキペディア(絶縁体)]]    <br/>
+
直線電流を軸とした回転で対称な現象なので、$ \vec{H} $は、導線からの距離 r が等しい場所の電界は、この軸の周りの回転で一致するため、大きさはすべて等しい。この値を$ H(r)$と書く。<br/>
-
半導体;  [[Wikipedia_ja:半導体|ウィキペディア(半導体)]]
+
任意の点Pに電流 I がつくる磁界を$ \vec{H_I}$とすると重ね合わせの原理から、同じ大きさの電流を逆に流すとき、P点の磁界は$ \vec{H_{-I}} = -\vec{H_I}$。
 +
これを上下逆にしてながめると、対称性から$ \vec{H_I}$ とおなじにみえなければならないので、$ \vec{H_I}$は、P点を始点として、$ \vec{O(P)P} $と直交したベクトルである(ここでO(P)はP点から直線電流におろした垂線の足)。<br/>
 +
さらに直線状の導線から距離$r_1$と$r_2$にある長さ$l$の線分を対辺とする長方形にアンペールの法則を用いると「$\vec{ H_I}$のIと平行な成分」は電流からの距離に無関係な値になることが分かる。無限遠点では零なので、どこでも零であることが分かる。ゆえに磁界は電流と直交。<br/>
 +
その向きは、「電流と垂直に交わり、かつ、電流を中心とする半径 r の円」の接線の、(電流の方向に進む)右ねじの回転方向である。従って、この円に沿って1Wbの磁荷を一周させるとき、磁荷の受ける仕事は、$ 2\pi r H(r) $となる。アンペールの法則から、
 +
$ I=2\pi r H(r)$ ∴$ H(r)=I/2 \pi r$ 
 +
<br/>
-
==== 摩擦電気====
+
=====ソレノイドの作る磁界=====
-
2つの不導体をこすりあわせると、このエネルギーで、電子が一方の物質から他方の物質に移動する。 <br />
+
円筒形の長い中空の筒に導線を一様に密にまいたコイルをソレノイドという。1mあたりn巻きしているとする。これに電流Iを流した時にできる磁界を求めよう。 <br/>
-
前者は正の電荷をもつ陽子の個数が電子の個数より多くなるので正の電荷を帯び、後者はそれと同じ大きさの負の電荷を帯びる。 <br />
+
厳密な解は難しいので、近似解をアンペールの法則から求めよう。<br/>コイルを流れる電流はコイルの各場所で右ねじの方向の磁界を発生させる。これらがある場所では強めあい、他の場所では弱めあって、現実の磁界が出来る。<br/>
-
この帯電した電気を摩擦電気という。<br />
+
ソレノイドの外側の側面の近くの磁界は、反対側の側面の電流のつくる磁界と弱めあい、ほぼ零。<br/>
 +
ソレノイドの内側の磁界はつよめあうので大きい。ソレノイドが、その軸のまわりの回転に関して対称なので、磁界の方向はソレノイド軸と平行で、磁界の大きさは、軸からの距離の等しいところでは同じ。<br/>
 +
さらに軸からの距離に関係なく同じ大きさ(Hと書く)であることが、アンペールの法則から、次のように証明できる。<br/>軸に平行で、軸からの距離$ r_1$と軸からの距離$ r_2$の長さlの線分を対辺とする、ソレノイド内部の長方形を考えろ。これにそって1Wbの磁荷を動かす時に磁荷の受けるエネルギーは、この長方形を貫く電流の大きさ零に等しい。これより導ける。<br/>
 +
内側の磁界の大きさは、'''H=nI'''。 何故なら、ソレノイドの軸と平行で長さがlの2本の線分(一方はソレノイドの外側で側面に近いもの、他方はソレノイド内部)を対辺とする長方形を考え、これにアンペールの法則を適用すれば、これを一周する1Wbの磁荷のうける仕事=Hl,これがこの長方形を貫く電流総和=nlI に等しい。
 +
=====もっと一般の電流の作る磁界=====
 +
アンペールの法則から直接計算するのは難しい。アンペールの法則と磁界の重ね合わせの原理から、磁界計算に大変都合のよい、ビオ・サバールの法則がえられる。これについては大学で学ぶ。興味のある方は
 +
*[[wikipedia_ja:ビオ・サバールの法則|ウィキペディア(ビオ・サバールの法則)]]
 +
をご覧ください。
-
*[[wikipedia_ja:摩擦電気|ウィキペディア(摩擦電気)]]
+
===磁界が電流に及ぼす力===
 +
アンペールは、電流は磁石に力を与えるので、(作用・反作用の原理から)磁石は電流に力を与えるはずであると考えた。<br/>
 +
さらに電流は磁石と同じ作用を持つので、電流は電流に力を及ぼすと考え、実験で次の事実を明らかにした。
-
==== クーロンの法則====
+
====2本の平行な直線状の電流が及ぼしあう力====
-
同符号の2つの電荷は互いに反発し、異符号の電荷は互いに引き合う。 <br />
+
2本の平行な導線に、それぞれ電流$I_1,I_2$を流すと、それらの電流の単位長さあたりには、次のような力$ \vec{F}$が働く。<br/>
-
2つの静止した点電荷間の力の向きは、これらを結ぶ直線の方向と一致し、その大きさは、2つの電荷の積に比例し、その距離の2乗に反比例する。クーロンの法則という。<br />
+
大きさは$F = k\frac{I_1 ,I_2}{R}$,  ,  ,(1)<br/>
-
この法則は、実験や観測から、原子の中(距離$10^{-15}m$以下では不成立)から宇宙の中の任意の静止電荷間にたいして普遍的に成り立つと考えられている。<br />
+
ここでR は平行線間の距離、kは正の比例定数。Fの単位は[N/m]<br/>
-
具体的には、
+
$\vec{F}$の向きは、<br/>
-
*[[wikipedia_ja:クーロンの法則|ウィキペディア(クーロンの法則)]]を参照のこと。 <br />
+
$I_1$と$I_2$が同じ向きならば相手の電流から引力をうけ、相手の導線へおろした向きつき垂線とおなじ向き、<br/>
 +
電流の向きが異なるならば斥力で、相手の導線へおろした向きつき垂線と逆の向きとなる。<br/>
 +
この事実にもとずいて、次のように、電流の単位が定められる。
-
向きと大きさを同時に記述できるのでベクトル表示は便利である。<br />
+
=====電流の単位アンペア[A]=====
 +
等しい強さの2本の平行な直線状の電流を1m 離しておいた時、それぞれの平行線に1mあたり、$2 \times 10^{-7}  N/m $ の力が作用する時1Aと決める。<br/>
 +
すると(1)式より、$2 \times 10^{-7}[N/m] = k\frac{1[A^2]}{1[m]}$, 故に比例定数は、$k=2\times 10^{-7}[N/A_2]=\frac{\mu _0}{2 \pi}$。ここで、$\mu _0= 4 \pi\times 10^{-7}[N/A^2]$は真空の透磁率とよばれる。
-
電荷$q_1$の位置ベクトルを$\vec{r_1}$、電荷$q_2$の位置ベクトルを$\vec{r_2}$、電荷$q_1$が電荷$q_2$から受けるクーロン力を$\vec{F_1}$とすると   <br />
+
=====平行電流に働く力の近接作用による表現=====
-
$\vec{F_1}=k\frac{1}{||\vec{r_1}-\vec{r_2}||^2}\frac{\vec{r_1}-\vec{r_2}}{||\vec{r_1}-\vec{r_2}||}$    <br />
+
電流$I_1$は、電流$I_2$が作った磁界から力を受けると考え、1mあたりに働く力の大きさFを、$F = \frac{\mu _0}{2 \pi}\frac{I_1 ,I_2}{R}= I_1 \mu_0 \frac{I_2}{2 \pi R} $と変形。直線電流$I_2$が作る磁界は、電流$I_1$のところでは、大きさが$ H_{I_2}{(R)}=I/2 \pi R$ であり、$I_1$と直交している。そのため$F = I_1 \mu_0  {H_{I_2}{(R)}}=I_1 \mu_0  {H_{I_2}{(R)}}\sin(\pi/2)$ と書ける。
-
 
+
===== 磁束密度と磁束=====
-
この表現法に慣れておくとよい。ここで、$ k=\frac{1}{4 \pi \varepsilon_0} $
+
'''$ \vec{B} = \mu_0  \vec{H}$''' で、'''磁束密度'''という変量を導入する。すると、磁束密度$\vec{B}$と直交する電流 I には1mあたり、 $F = I|\vec{B}|= I|\vec{B}| \sin(\pi/2)$ の力が働く。 <br/>  
-
$\varepsilon_0 $は真空の誘電率と呼ばれる。<br />
+
9章で学んだ磁力線の本数を、$\vec{B}$と直交する単位面積(1㎡)あたりB(=$|\vec{B}|$)本書くとする。すると、磁力線と直交する面積 S には、$ \Phi=BS $ 本の磁力線が貫くことになる。つらぬく磁力線の総本数$ \Phi $ を'''磁束'''と呼ぶ。 <br/>
-
実測によると$k = 9.0\times 10^{9}[\frac{N m^2}{C^2}]$ $\varepsilon_0 = 8.9\times 10^{-12} [\frac{C^2}{N m^2}]$ である。   <br />
+
点Pでの磁束密度$\vec{B(P)}$は、その点での磁力線の方向と磁束の密度を表す。<br/>
-
 
+
磁束密度については
-
(注)真空中の誘電率という用語について;<br />
+
*[[wikipedia_ja:磁束密度|ウィキペディア(磁束密度)]]
-
真空では誘電するものがなく、奇異に思うかもしれないが、歴史的にこう命名されたので、気にしないで。<br />
+
-
クーロン則は誘電されるものが無い状態で常になりたつということ。<br />
+
-
誘電については後(2.5 電界中の不導体と誘電分極)で学ぶ。<br />
+
-
運動する2つの電荷の間にも力が働くが大変複雑であり、導出も大変難しい。
+
-
 
+
-
 
+
-
=====  3つ以上の電荷に働く力=====
+
-
N 個(>2)の電荷$q_1,,,,q_N $ があるとき、$q_1$ に作用する電気力は、$q_2,,,,q_N $ のそれぞれから$q_1$が受けるクーロン力(ベクトル表示)の和になることが実験で確かめられている。    <br/>
+
-
これを、'''クーロン力の重ね合わせ原理'''という。
+
-
 
+
-
=====  クーロン力は保存力=====
+
-
クーロン力は、[[物理/力学(4) 運動量と力学的エネルギー保存則|5章 力学(4) 運動量と力学的エネルギー保存則]]によれば、保存力であることが分かる。<br/>
+
-
保存力は位置エネルギをもつ。クーロン力の位置エネルギーを電位という。詳しくは後述する。
+
-
 
+
-
==== 電気力は重力よりはるかに大きいこと====
+
-
2つの電子を$$メートル離したときに作用する、重力と電気力(クーロン力)を計算して、その比を求めよ。 <br/>
+
-
電気力が重力よりはるかに大きいことが分かるだろう。
+
-
 
+
-
==== クーロン力は原子の中も支配====
+
-
原子核と電子の引き合う力もクーロンの法則が成立すると仮定して、色々な計算をすると、実測値とほぼ一致することから、
+
-
このような極しょうの世界($10^{-15}$m位まで)でもクーロンの法則は成立すると考えられている。
+
-
 
+
-
=== 電界(電場ともいう)===
+
-
電荷間に作用する力を近接作用の考え方で考察して電界(電場ともいう)という重要な概念を得る。<br />クーロンの法則を電界の概念でいいかえると、電界にかんするガウスの法則が得られる。電界から電位や電圧という重要な概念も得られる。
+
-
 
+
-
==== 遠隔作用と近接作用====
+
-
電荷の間のクーロン力はどのようにして働くのだろうか。 <br/>
+
-
遠隔作用と近接作用という二つの考え方がある。<br/>
+
-
遠隔作用では、離れた電荷が直接互いに力を及ぼしていると考える。<br/>
+
-
動いている電荷間に働く力を直接記述すると大変複雑であり、遠隔作用に基づく電磁気現象の記述や解析は困難である。<br/>
+
-
 
+
-
近接作用では、電荷は空間全体の性質をかえ電界を作り、この電界の中におかれた他の電荷は、その場所の電界から力を受けると考える。 <br/>
+
-
この考え方に基づく現象の記述や解析は、遠隔作用にくらべ、簡明・容易である。 <br/>
+
-
現在では近接作用に基づいて、電磁気の基本法則は記述・解析され、有効性が確かめられている。
+
-
 
+
-
==== 電界の定義====
+
-
電荷に静電気力(クーロン力)を及ぼす空間を'''電界'''(電場ともいう)と呼ぶ。<br />
+
-
特に時間がたっても変化しない電界を'''静電界'''という。
+
-
空間の任意の点の電界の強さと向きは、その点に単位電荷を置いたときに作用する静電気力で定義する。 <br />
+
-
正確にいうと、単位電荷をおくと、空間の電界をつくっている電荷達に力を及ぼし、動かしてしまい、電界を変えてしまうので、<br />
+
-
無限小の電荷qを置いた時作用する電気力を $\vec{f}$ とするとき、 $ \vec{f}/q $  で電界を決め,
+
-
$ \vec{E(x)} $  で表す。
+
-
 
+
-
力はベクトルなので、作用する電気力で定義する電界はベクトルである。<br />
+
-
詳しくは
+
-
*[[wikipedia_ja:電場|ウィキペディア(電場)]]
+
-
 
+
-
==== 静止した点電荷の作る電界 ====
+
-
空間の位置$\vec{r}$に置いた電荷$\mathit{q}$が位置ベクトル$\vec{r'}$ の場所に作る電界は、クーロンの法則と
+
-
電界の定義から、<br />
+
-
$\vec{E_q(r')}=\frac{kq}{|\vec{r'}-\vec{r}|^2}\frac{\vec{r'}-\vec{r}}{|\vec{r'}-{r}|}$   <br />
+
-
 
+
-
===== 電界によるクーロンの法則の表現=====
+
-
場所$\vec{r}$の電荷$ \mathit{q} $と、場所$\vec{r'}$の電荷$ \mathit{q'} $の間に働く電気力は、<br />
+
-
$\vec{F}=qk\frac{q'}{|\vec{r}-\vec{r'}|^2}\frac{\vec{r}-\vec{r'}}{|\vec{r}-{r'}|}=q\vec{E_{q'}(r)}$ ; 電荷$ \mathit{q} $  に働く力<br /> 
+
-
$\vec{F'}=q'k\frac{q}{|\vec{r'}-\vec{r}|^2}\frac{\vec{r'}-\vec{r}}{|\vec{r'}-\vec{r}|}=q'\vec{E_q(r')}$ ;電荷$ \mathit{q'} $  に働く力  <br />
+
-
 
+
-
==== 点電荷のつくる電界====
+
-
点電荷のつくる電界については
+
-
*[[wikipedia_ja:電場|ウィキペディア(電場)]] の2.1 クーロンの法則
+
-
を参照のこと。静電荷の作る電界は、時間変動がなく、静電界と呼ばれる。 
+
-
==== 2つ以上の点電荷の作る電界====
+
-
クーロン力の重ね合わせの原理と電界の定義から、それぞれの電荷がつくる電界のベクトル和を取れば良いことが分かる。'''電界の重ね合わせの原理'''という。
+
-
==== 電界の単位====
+
-
$ \vec{F}=\mathit{q}\vec{E} $、電荷$\mathit{q}$の単位はC(クーロン)、力$ \vec{F} $の単位はN(ニュートン)なので、<br />
+
-
電界$ \vec{E} $の単位はN/C である。
+
-
 
+
-
==== 電気力線とガウスの法則====
+
-
===== 電気力線とは  =====
+
-
電界を目で見て理解できるように工夫したのが電気力線。<br />
+
-
電界内で正の電荷が電界から力を受けて非常にゆっくりと動く時の向きのついた軌跡(曲線)を考え、電気力線と呼ぶ。<br />
+
-
正確には、曲線の各点における電界が、その曲線に接しているような曲線を電気力線という。
+
-
 
+
-
===== 電気力線の本数と密度=====
+
-
ある点Pで電界の強さが$ \mathit{E}=|\vec{E}| $ であるとき、<br />その点の周りに電界と直交する微小な平面部分を考え、<br /> そこを$1m^2 $ あたり$ \mathit{E} $本の密度で電気力線が通るように描いて、電界の強さを表示する(電界の強さが、負のときは向きを逆に、また整数でなく、例えば0.1のような時は、一つの電気力線が0.1本を表すとして、図示すればよい)。
+
-
 
+
-
 
+
-
===== ガウスの法則=====
+
-
● O点に置かれた一つの点電荷$ +q $がつくる電気力線の場合;<br/>
+
-
電気力線はO点を始点とする外向きの半直線となる。<br />
+
-
その密度;O点を中心とし半径$r$ [m]の球面上での電界の大きさは、$\mathit{E}=\frac{q}{4 \pi \varepsilon_0}\frac{1}{r^2}=\frac{kq}{r^2}$ [N/C] なので、この球面を$1m^2 $ あたり$\mathit{E}=\frac{kq}{r^2}$ 本の電気力線が、中から外に向かって、貫く。<br />
+
-
球面の中から外に向かう電気力線の総本数;球面の面積は$ 4 \pi r^2  $ なので、球面全体を貫いて出ていく電気力線の総本数は$\frac{q}{\varepsilon_0} =4\pi kq$。球面の半径を変えてもこの本数は変わらない。大学で学ぶ少し高等な数学を利用すると、O点を含む任意の形状の立体の表面を貫いて出ていく電気力線の総数も、$\frac{q}{\varepsilon_0} $であることが示せる。<br />
+
-
●O点を含まない任意の形状の立体の表面を考えると、O点からの半直線である電気力線がこの面から立体の中にはいると、必ず出ていくので、この立体に入る電気力線の本数は、出ていく本数と等しい。前者は負の本数と取り決めると、立体を出ていく本数の合計は0本となる。故に、電荷が内部にあろうとなかろうと任意の形状の立体の表面を貫いて出ていく電気力線の総数=$\frac{q}{\varepsilon_0} $が成立する。ここで$ q $はこの立体の内部にある点電荷。<br />
+
-
● 重ね合わせの原理をもちいると、上記の法則は次のように、一般化出来る。<br />
+
-
任意の形状の立体Vの表面Sを貫いて出ていく電気力線の総数=$\frac{Q}{\varepsilon_0} $。<br />
+
-
 
+
-
ここで、$Q$はこの立体の内部にある全電荷量。  <br />
+
-
これを'''ガウスの法則'''という。電磁気学の基本法則の一つで重要な法則である。  <br />
+
-
この法則の導出を吟味すると、ガウスの法則はクーロン則から導かれていることがわかる。 <br />
+
-
ところがクーロン力はあらゆる静止電荷間に作用するので <br />
+
-
ガウスの法則は、電気力線(電界)を生み出している、立体Vの内部にある電荷をすべて考慮してQとすれば、どのような物質の中でも、常に成立している。<br />
+
-
「2.5 電界中の不導体と誘電分極」で学ぶように電荷Qを置いたとき、それが作る電界で、自動的に電荷が誘導され、これのつくる電界がもとの電界に加わって変化した電界が観測される。 <br />
+
-
そこで観測電界の電気力線のガウスの法則の右辺の電荷は、立体V内の元の電荷と誘電された電荷を含めたものにしないといけない。
+
-
● ガウスの法則は電磁気学の基本法則のひとつで、色々応用されるので、理解を深めるため別の表現を記しておく。<br />
+
-
「任意の形状の立体Vの表面Sを貫いて出ていく電気力線の総数」を、電界$\vec E$とSの各点$\vec r$に立体Vの外部にむけて立てた長さ1の垂線$\vec n(\vec r)$(Sの点$\vec r$におけるVの単位外法線と呼ぶ)を用いて表現しよう。<br />
+
-
'''$\vec n(\vec r)$と$\vec E(\vec r)$が方向も向きも一致するとき'''は、面Sは、点$\vec r$の近くの小部分$dS(\vec r)$で、$\vec E(\vec r)$と直交するので、ここを貫いて出ていく電気力線の本数はE($\vec r$)×$dS(\vec r)$の面積=$\vec E(\vec r)$の外法線成分×$dS(\vec r)$の面積。<br />
+
-
'''$\vec n(\vec r)$と$\vec E(\vec r)$が方向は一致するが向きは逆の時'''は、 <br />
+
-
$\vec r$の近くの小部分$dS(\vec r)$で、$\vec E(\vec r)$と直交するが、電気力線は、この小部分から、立体Vに、流れ込む。 <br />
+
-
その本数はマイナスで数え、-E($\vec r$)×$dS(\vec r)$の面積=$\vec E(\vec r)$の外法線成分×$dS(\vec r)$の面積。<br />
+
-
'''$\vec n(\vec r)$と$\vec E(\vec r)$ が角度 $\theta$のとき。''' <br />
+
-
$\vec E(\vec r)$の、小部分$dS(\vec r)$に対する直交成分は、$\vec E(\vec r)$の外法線成分であるので、この部分を貫いて外部に出ていく電気力線の数は、この場合も、$\vec E(\vec r)$の外法線成分。<br />
+
-
局面Sの微小部分$dS(\vec r)$を寄せ集めてS全体にすると、<br />
+
-
「任意の形状の立体Vの表面Sを貫いて出ていく電気力線の総数」は、電界$\vec E$の外法線成分のS全体での平均値×面Sの面積となる。<br />
+
-
従ってガウスの法則は、次のように言いかえることができる。<br />
+
-
S上の電界$\vec E$の外法線成分のS全体での平均値×面Sの面積=$\frac{Q}{\varepsilon_0} $。<br />
+
-
あるいは、$\varepsilon_0 \vec E$の外法線成分のS全体での平均値×面Sの面積=$Q$。
+
-
 
+
-
(注)これは真空中にある電荷について成立する。不導体である流体、気体中では、電荷$Q$により、勝手に分極電荷という別の電荷が誘導され、これのつくる電界が加わって電気力線の数がかわってしまうので、ガウスの法則は成り立たない。しかし分極電荷も電荷にくわえれば、ガウス法則は常に成り立つ。これについては、[[http://ja.iwschool.org/wiki/%E7%89%A9%E7%90%86/%E9%9B%BB%E6%B0%97%E3%81%A8%E7%A3%81%E6%B0%97(%EF%BC%91)_%E9%9D%99%E9%9B%BB%E6%B0%97%E3%81%A8%E9%9B%BB%E7%95%8C%E3%80%81%E9%9D%99%E7%A3%81%E6%B0%97#.E9.9B.BB.E7.95.8C.E4.B8.AD.E3.81.AE.E4.B8.8D.E5.B0.8E.E4.BD.93.E3.81.A8.E8.AA.98.E9.9B.BB.E5.88.86.E6.A5.B5.E3.80.80 | 2.5 電界中の不導体と誘電分極]]で学ぶ。
+
-
 
+
-
===== ガウスの法則の応用=====
+
-
例1:面密度(単位面積あたりの電荷量)$\sigma $ で、一様に電荷が分布する無限に広い平面の作る電界。 <br />
+
-
ヒント 平面から距離dの点の電界は、対称性から向きはこの平面に直行し、大きさはどのでも等しい。平面から距離d以内の点のつくる正方体を考え、ガウスの法則を適用する。<br />
+
-
解:$E=\frac{\sigma}{2 \varepsilon_0} $         <br />
+
-
例2:平行板コンダンサー(2枚の金属の薄い平板を距離dをへだてて平行に置き電極をつけたもの。dに比べ極板面積は十分大きいとする)の1枚の極板に面密度 $+\sigma $、他方の極板に面密度$-\sigma $の電荷を帯電させた時、周りに生じる電界を求めよ。<br />
+
-
解:例1と重ね合わせの原理より、極板間では$E=\frac{\sigma}{\varepsilon_0} $, 他では零。
+
-
 
+
-
=== 電位と電圧===
+
-
電界中で電荷は力を受ける。その力と逆向きで同じ大きさ(実際にはそれより無限小だけ大きい)の力を与えて、単位電荷を基準とするO点からA点に(電荷の運動エネルギーが無視できるほどに)ゆっくり動かすのに必要なエネルギーを、O点を基準点としたA点の'''電位'''(electric potential)
+
-
という。<br/>
+
-
前述のように点電荷のクーロン力は保存力なので、O点からA点に動かす経路に関係なく,このエネルギーは一定なので、電位は定まる。  <br/>
+
-
複雑に配置された電荷のつくる電界の場合にも、重ね合わせの原理から、電界からうける力は保存力となり、電位は経路に関係なく定まる。  <br/>
+
-
 
+
-
電位については以下を参照のこと。
+
-
*[[wikipedia_ja:電位|ウィキペディア(電位)]]
+
-
2点間の電位の差を、電位差あるいは電圧という。
+
-
 
+
-
また保存力については、
+
-
*[[物理/力学(4) 運動量と力学的エネルギー保存則|力学(4) 運動量と力学的エネルギー保存則]]の位置エネルギーの項と
+
-
*[[wikipedia_ja:電位|ウィキペディア(電位)]]
+
を参照のこと。
を参照のこと。
-
==== 電界と直交する曲線上では等電位====
+
==== 磁界中の電流がうける力====
-
曲線のどの場所でも電界と直交する曲線Cを考える。この上では電位は等しいことが次のようにして示せる。<br/>
+
① 磁界が同じならば、それが何によって作られたものであるかに関係なく同じ力をうけるはずである。 <br/>
-
曲線上の任意の点Aから、曲線上の他の点Bまで、単位電荷を曲線にそってゆっくり移動させよう。<br/>この時電荷に加える力は、電界と逆むきで大きさの等しい力である(これ以外に、C上をゆっくり動かすために無限に小さな力を加えたもの。しかしこれはいくらでも小さくできるので無視できる)。<br/>
+
したがって磁界$H$に直行する電流$I$の受ける力は、<br/>
-
しかしC上を動くときは、動く方向は、常に電界と直交するので、電荷に加える力とも直交し、仕事は零となる。したがって電位は等しい。
+
1mあたり$F=\mu_0IH=IB$の大きさで、<br/>
 +
向きは、電流の向きから磁界の向きへと右ねじを回す時のねじの進行方向。<br/>
 +
② それでは、磁界と電流が直交しないときに受ける力はどうなるのだろうか。<br/>
 +
実験によると磁界と電流が平行ならば、電流は磁界から力を受けないことが確かめられる。<br/>
 +
これら2つの事実から、電流と磁界のなす角度を$\theta$ とすると、<br/>
 +
磁界中の電流に働く、単位長さ当たりの、力$ \vec{F}$は、<br/>
 +
大きさが$F=\mu_0IH\sin\theta=IB\sin\theta$ <br/>
 +
向きは、電流の向きから磁界の向きへと右ねじを回す時のねじの進行方向,のベクトル<br/>
 +
であることが示せる。
-
==== 電位・電圧の単位====
+
===== ベクトル積またはクロス積    =====
-
電荷の単位を[C],仕事の単位を[J]にした時の電位を、ボルトという。すなわち[V]=[J/C]。
+
電流が磁界から受ける力$ \vec{F}$は、以下の、ベクトル積(クロス積とも呼ばれる)を使うと正確に、簡単に記述できる。
-
*[[wikipedia_ja:ボルト|ウィキペディア(ボルト)]]
+
*[[wikipedia_ja:クロス積|ウィキペディア(クロス積)]]
 +
これを用いると、磁界から電流の受ける力は,1mあたり、 <br/>
 +
$ \vec{F}=\mu_0\vec{I}\times\vec{H}=\vec{I}\times\vec{B}  \qquad \qquad \qquad \qquad \qquad \qquad  $ (10-1)<br/>
 +
ここで、 $ \vec{I}$ は、大きさが$I$で、方向が電流の方向と一致するベクトルで、電流ベクトルと呼ばれる。
 +
======  ベクトル積の性質======
 +
$ \vec{a},\qquad \vec{b},\qquad \vec{c}$を2次元あるいは3次元ベクトルとする。<br/>
 +
性質0.$ \vec{a} $ を, $ \qquad \vec{b} $と垂直な成分$ \vec{a_\perp}$ と,
 +
平行な成分$\vec{a_\parallel}$ の和に分解するとき、 <br/>
 +
$\qquad \qquad \qquad  \vec{a} \times \vec{c}= (\vec{a_\perp}+\vec{a_\parallel})\times \vec{c}=\vec{a_\perp} \times \vec{c}$  <br/>
 +
性質1.$ \vec{a} \times \vec{b}= -\vec{b} \times \vec{a}$    <br/>
 +
性質2.$ (\vec{a}+ \vec{b})\times \vec{c}= \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$ <br/>
 +
性質3.$(e_1,e_2,e_3)$ をそれぞれ長さ1で互いに直交し、[[wikipedia_ja:右手系|右手系]]をなす、ベクトルとする。この時、<br/>
 +
$\qquad \qquad \qquad e_1 \times e_2 = e_3, \qquad e_2 \times e_3 = e_1, \qquad  e_3 \times e_1 = e_2$<br/>
 +
性質0の証明;ベクトル積の定義から明らかである。<br/>
 +
性質1の証明;ベクトル積の定義から明らかである。<br/>
 +
性質2の証明;① $ \vec{a},\qquad \vec{b}$ と$ \qquad \vec{c}$ が直交する場合。<br/>
 +
$\vec{a} \times \vec{c} $は、$ \vec{a} $を、$\vec{c} $と垂直な平面H内で90度回転(右ねじを$\vec{a}$から$\vec{c}$へ回した時の進行方向)して、長さを$c=|\vec{c}|$倍したベクトル。$\vec{b} \times \vec{c} $は、同じ平面H内で$ \vec{b} $を、同じ方向に、90度回転して、長さを$c=|\vec{c}|$倍したベクトル。$ (\vec{a}+ \vec{b})\times \vec{c}$も、同じ平面内を同じ向きに90度回転し、長さを$c=|\vec{c}|$倍したベクトル。従って$ \vec{a}$と$\vec{b}$から作られる平行四辺形と$\vec{a}\times \vec{c} $ と$\vec{b}\times \vec{c} $からつくられる平行四辺形は相似となり、$ (\vec{a}+ \vec{b})\times \vec{c}= \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$が示せる。 <br/>
 +
② 一般の場合。<br/>
 +
性質0より、$\perp$ を$ \qquad \vec{c}$と垂直な成分を表すとすると、 $ (\vec{a}+ \vec{b})\times \vec{c}= (\vec{a}+ \vec{b})_\perp \times \vec{c} \qquad \qquad \qquad $(1)<br/>
 +
$(\vec{a}+ \vec{b})_\perp =\vec{a}_\perp +\vec{b}_\perp$なので、(1)式は、<br/>
 +
$ = (\vec{a}_\perp +\vec{b}_\perp) \times \vec{c}$,①より、<br/>
 +
$ = \vec{a}_\perp \times \vec{c}+\vec{b}_\perp\times \vec{c}=\vec{a} \times \vec{c}+\vec{b} \vec{c}$。証明終わり。<br/>
 +
性質3の証明;ベクトル積と$(e_1,e_2,e_3)$ の定義から、明らかである。 
-
==== 点電荷のつくる電界の電位====
+
==== 応用;電動機 ====
-
電位の基準点として無限の彼方をとる。A点に置かれた+q[C]の電荷のつくる電界の電位は、A点から距離r[m]の点Pで、$\mathit{V}=\frac{q}{4 \pi \varepsilon_0 r}$ 。  これは単位の正電荷を無限遠点からP点まで、クーロン力に抗した力を加えゆっくり動かす時の力のなすエネルギーを積分計算して求めればよい。
+
-
==== 2つ以上の点電荷の作る電界の電位====
 
-
電界の重ね合わせの原理から、それぞれの点電荷のつくる電位を加えればよい。
 
-
==== 電気双極子 ====
+
====ローレンツ力====
-
電気双極子(electric dipole)とは、微小な距離だけ離れた、大きさの等しい正負一対の電荷のこと。  <br/>
+
磁界中では電流は力を受ける事が分かった。電流とは運動する電荷なので、運動する電荷は磁界から力を受けることになる。  <br/>
-
後述するように電気双極子は自然界によく現れるので、双極子のつくる電位$\phi$を調べることは大切である。 <br/>
+
それでは、速度$\vec{v}$ で運動する電荷$e$はどのような力を受けるのだろうか。 <br/>
-
電荷をq,-qとし、-qからqへのベクトルを $\vec d$ とする。空間の原点を両電荷の中点に選ぶ。 <br/>
+
電流に働く力から、この力を導こう。<br/>
-
位置ベクトル $\vec r$ の電位は、重ね合わせの原理より、 <br/>
+
導線の断面積をS[$m^2$]とし、そこを電荷$e(\gt 0)$が、電流方向に速さ v[$m/s$]で運動(実際には電荷$-e$
-
<br/>
+
の自由電子が、電流と逆方向に速さvで運動)しているとする。自由電子の密度をn[個/$m^3$]とする。
 +
=====電流 I と電荷の速さ v との関係=====
 +
電流が$I[A]$なので、定義から導線のある断面を通過する電荷量は毎秒$I[C/s]$,
 +
他方、その断面を通過する電荷の個数は毎秒$Svn$個である。
 +
∴ $I=Svne$  <br/>
-
$\phi(\vec r)\,=\,\frac{q}{4 \pi \varepsilon_0 r_q}\,-\,\frac{q}{4 \pi \varepsilon_0 r_{-q}}\,=\,\frac{q}{4 \pi \varepsilon_0}(\frac{1}{r_q}-\frac{1}{r_{-q}})\hspace{150pt}           (9-1)$   <br/>
+
=====一個の電荷が磁界から受ける力=====
-
ここで、 $r_q$  は点電荷qと位置ベクトル$\vec r$ の点との距離、 $r_{-q}$  は点電荷-qと位置ベクトル$\vec r$ の点との距離。 <br/>
+
従って、電流ベクトル$\vec{I}$ と電荷の速度ベクトル$\vec{v}$ の間には、$\vec{I}=Sne\vec{v}$ <br/>
-
次の説明も参考に。
+
(10-1)式の右辺に、上式を代入すると、
-
*[[wikipedia_ja:電気双極子|ウィキペディア(電気双極子)]]
+
$ \vec{F}=Sne\vec{v}\times\vec{B} $<br/>
 +
これが導線1mの受ける力であるが、導線1m中には電荷は$Sn$個あるので、一個の電荷(速度$\vec{v}$)の受ける力は、<br/>
 +
$ \vec{f}=e\vec{v}\times\vec{B} $
-
===== 遠方に作る電位と双極モーメント =====
+
=====ローレンツの法則=====
-
双極子の電荷間の距離 d に比べて、ずっと離れた点 $\vec r$  の電位を簡略な式で近似しよう。 <br/>
+
電界$ \vec{E} \ $,磁束密度  $ \vec{B} \ $の中を、速度$ \vec{v} \ $で運動する電荷 q は、
-
式(9.1)で $r_q$ は、点電荷 q と位置ベクトル$\vec r$ の点との距離なので、$r_q=||\vec r -\frac{\vec d}{2}||=\sqrt{\sum_{i=1}^3 |r_i-d_i/2|^2}$、同様に、$r_{-q}=||\vec r +\frac{\vec d}{2}||=\sqrt{\sum_{i=1}^3 |r_i+d_i/2|^2}$   <br/>
+
$ \vec{f}=q(\vec{E}+\vec{v}\times\vec{B}) $ の力を受ける。これを'''ローレンツの法則'''という。<br/>
-
$||\vec d|| \ll ||\vec r|| $ の時、まず、$\frac{1}{r_q}$ を簡略化する。<br/>
+
電荷に働く電磁気的な力は、必ずローレンツの法則を満たすことが実験で確かめられている。 <br/>
-
$\frac{1}{r_q}=
+
次の解説を参照のこと。
-
1/||\vec r -\frac{\vec d}{2}||=
+
*[[wikipedia_ja:ローレンツ力|ウィキペディア(ローレンツ力)]]
-
1/||\vec r|| \times ||\frac{\vec r}{||\vec r ||}-\frac{\vec d}{2||\vec r||}||=
+
-
1/||\vec r||\times ||\frac{\vec r}{||\vec r ||}-\frac{||\vec d||}{2||\vec r||}\frac{\vec d}{||\vec d||}||$    <br/>
+
-
$f(x)=1/{||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||}$ という関数を導入すると    <br/>
+
-
$\frac{1}{r_q}=\frac{1}{||\vec r||}f(\frac{||\vec d||}{2||\vec r||})$
+
-
<br/>
+
-
ここで $\frac{||\vec d||}{2||\vec r||}$ は微小なので、$f(\frac{||\vec d||}{2||\vec r||})$ は、 $x=0$ での、$y=f(x)$ の接線の$x=\frac{||\vec d||}{2||\vec r||}$ での値$y=f(0)+f'(0)\frac{||\vec d||}{2||\vec r||}$ で精度良く近似できる。そのため、<br/>
+
-
$(9-2)\hspace{50pt} \frac{1}{r_q} \simeq \frac{1}{||\vec r||}(f(0)+f'(0)\frac{||\vec d||}{2||\vec r||}) $    <br/>   
+
-
ここで、 <br/>  
+
====== 一様な静磁界のなかの荷電粒子の運動======
-
$(9-3)\hspace{150pt} f(0)=1$       <br/>  
+
一様な磁界(磁束密度$\vec{B}$が一定)の中で、電荷 q はどのように運動するか、調べよう。但し重力の影響は無視する。<br/>
 +
電荷の時刻tでの位置を$\vec{r(t)}$,その時の速度を$\vec{v(t)}$
 +
、加速度を$\vec{\alpha(t)}$とおくと、粒子の運動方程式は<br/>
 +
$m\vec{\alpha}=m*d\vec{v}/{dt}= q\vec{v(t)}\times\vec{B}\qquad \qquad \qquad $  (1) <br/>
 +
磁界に垂直に電荷を速さvで入射する。<br/>
 +
「上式の右辺で表される電荷の受ける力」の方向は電荷の速度ベクトル$\vec{v(t)}$ と磁界$\vec{B}$ の双方に垂直で、右ねじを速度ベクトルから磁界のほうに回した時のねじの進行方向である。電荷は受ける力の方向に向きを変えるので、絶えず磁界に垂直な方向に向きを変える。従って、電荷は磁界と垂直な1つの平面上を向きをかえながら進行する。<br/>
 +
この間電荷は、進行方向に直角の力を受け続けるので、電荷は磁界からエネルギーを受け取らない。従って、運動エネルギー保存則より、電荷の速さは入射時の速さvを保持する。<br/>
 +
したがって、電荷は進行方向と直角の方向に、大きさが一定qvBの力を受け続けて等速 v で運動するので、曲がり方も絶えず一様となり、等速vで円軌道を描くことが分かる。この半径を r と書くと、[[物理/力学(1) 速度、加速度とヴェクトル|「2章 力学(1) 速度、加速度とヴェクトル」]]の「2.2.2.3 等速円運動の加速度」の式から、加速度の大きさは$\alpha={v^2}/{r}$であり、また、(1)式の両辺のベクトルの大きさが等しいことから$m\alpha= qvB$なので、半径は$r=mv/(qB)$ である。
-
$f'(0)=\lim_{x \to 0} \frac{f(x)-f(0)}{x}=\lim_{x \to 0}\frac{1}{x}(\frac{1}{||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||}-1)=\lim_{x \to 0}\frac{1}{x}(\frac{1-||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||}{||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||})  $    <br/>
+
====磁界中を動く導体に発生する起電力 ====
-
 
+
導体は膨大な個数の正電荷(原子核)と負電荷(電子)を持っている。導体を磁界中で動かすとこれらの電荷は、磁界中を動くことになり、磁界からローレンツ力を受ける。
-
$=\lim_{x \to 0}\frac{\frac{1}{x}(1-||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||)}{||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||}=
+
-
\lim_{x \to 0}\frac{1}{x}(1-||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||)=
+
-
\lim_{x \to 0}\frac{1}{x}(1-||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||^2)/(1+||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||)$    <br/>
+
-
$
+
-
=\lim_{x \to 0}\frac{1}{2x}(1-||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||^2)
+
-
$ 、    <br/>
+
-
上の式を
+
-
$
+
-
||\vec{a}- \vec{b}||^2=||\vec{a}||^2+||\vec{b}||^2-2\vec{a} \cdot \vec{b}
+
-
$ (ここで、
+
-
$
+
-
\vec{a} \cdot \vec{b}=\sum_{n=1}^{3}a_{n}b_{n}
+
-
$) 、実数αに対して$||\alpha \vec{a}||=\|\alpha \| ||\vec{a}||=$
+
-
を利用して変形すると<br/>
+
-
$  (9-4)\hspace{50pt}
+
-
f'(0)=\lim_{x \to 0}\frac{1}{2x}(-x^{2}+2x \frac{\vec{r}\cdot\vec{d}}{||r||\times||d||})
+
-
=\frac{\vec{r}\cdot\vec{d}}{||r||\times||d||}  $ 、<br/>
+
-
(9-2)式に、 (9-3),(9-4)式を代入して、<br/>
+
-
$(9-5)\hspace{50pt}\frac{1}{r_q} \simeq \frac{1}{||\vec r||}(1+\frac{\vec{r}\cdot\vec{d}}{2||r||^2})      $ 、<br/>
+
-
同様に計算すると<br/>
+
-
$(9-6)\hspace{50pt} \frac{1}{r_{-q}} \simeq \frac{1}{||\vec r||}(1-\frac{\vec{r}\cdot\vec{d}}{2||r||^2})$ 、<br/>
+
-
(9-1)式に、 (9-5),(9-6)式を代入すると、
+
<br/>
<br/>
-
$(9-7)\hspace{50pt}\phi(\vec r)=\frac{q \vec{r}\cdot\vec{d}}{4 \pi \varepsilon_0 ||r||^3} $    <br/>
+
大部分の電荷はお互いにしっかり結合して金属を構成しているため動かないが、自由電子は自由にうごけるので、磁界からうける力の方向に移動する。<br/>
-
上の式で、$\vec{p}=q \vec{d}$ (-qからqへのベクトルを$\vec{d}$ とする)
+
こうして、磁界中を動く導体には、起電力(電気を流す力)が発生する。
-
と置き一対の電荷-q、q の作る'''双極子モーメント'''と呼ぶ。これを用いると、双極子が離れた点$\vec{r}$に作る電位は、<br/> 
+
-
$ (9-8)\hspace{50pt} \phi(\vec r)=\frac{ \vec{r}\cdot\vec{p}}{4 \pi \varepsilon_0 ||r||^3}    $
+
-
==== 等電位面 ====
+
====磁界中を動く導体の棒に発生する電界 ====
-
電位の等しい点をつないで出来る面を等電位面という。等電位面と電気力線は直交していることが示せる。導体のすぐ外側の電界は、導体表面に垂直である。理由を考えてみてください。
+
-
==== 静電界中の導体と静電誘導====
+
-
導体に、静電界をかけると、導体内部にもこの電界が及び、導体内部の自由電子はこの電界から力を受けて移動し始める。導体の片側(電気力線の下流側)は正、その反対側は負に、帯電していき、その電荷により、外部電界を打ち消す方向の電界が発生する。この電界と外部電界の和が導体内部の電界となる。この導体内部の電界により、自由電子は力を受けて動き続けて、短時間のうちに、導体の帯電が増え、導体内部の電界は零になる。これを静電誘導という。導体の内部電界が零になると電子の移動はなくなる。詳しくは
+
-
*[[wikipedia_ja:静電誘導|ウィキペディア(静電誘導)]]
+
-
==== 静電遮蔽====
+
導体の棒を磁界中で動かすと起電力が発生し、自由電子は移動する。自由電子が貯まって行く側は負に帯電し、反対側は自由電子が少なくなるので、正に帯電していく。<br/>
-
静電界の中に置かれた、導体の箱の中の空間には、電荷が存在しない限り、電界は存在せず、電位は一定である。このように導体の箱の内部は、外部の静電界から遮蔽されている。   <br/>
+
すると導体内に電界が発生し急速に強くなっていく。それに伴い導体内の自由電子は、この電界から、ローレンツ力と逆向きで、急速に増加する力を受けるので、瞬時に2つの力がつりあい、自由電子の移動が止まり、平衡状態になる。 <br/>
-
問い。何故か、考察せよ。   <br/>
+
-
ヒント: 背理法で証明する。もし、箱の内部の電位が一定でないとすると、「電位は、ある内部の点pで最大値をとり、その値は導体箱の電位(一定)より大きい」か、
+
-
「ある内部の点p’で最小値をとり、その値は導体箱の電位より小さい」。前者では、p点を含む小さな立体を考えると、それを内から外へ貫く電気力線の数は正となり、ガウスの法則に反する。後者でも同様。
+
-
 
+
-
=== コンデンサー===
+
-
コンデンサーは電気を蓄える道具である。
+
-
*[[wikipedia_ja:コンデンサ|ウィキペディア(コンデンサ)]]
+
-
==== コンデンサーに蓄えられる電気量Qと電圧Vの関係====
+
-
重ね合わせの原理から、コンデンサーの極板の帯電量$\pm Q$と、この電荷の作る電界は正比例する。電界と電圧も正比例するので、帯電量Qは、極板間の電圧Vに正比例する。<br/>
+
-
$Q = C V $ <br/>
+
-
Cはコンデンサーの'''電気容量'''と呼ばれる。その単位は,上の式を用いて決められ、ファラッド['''F''']と呼ばれる。$C = V/Q $ で、電位Vの単位はボルト$[V] $、電荷Qの単位はクーロン$[C] $を用いて、$[F]=[V/C]$と定める。$[V]=[Nm/C]$([N]は力の単位、ニュートン)なので$[F]=[\frac{C^2}{N m}]$とも書ける。<br/>
+
-
 
+
-
平行板コンデンサーの場合には、極板の面積をS,極板間の距離をdとすると、<br/>
+
-
$C = \varepsilon_0 \frac{S}{d}.......(9-9) $  <br/>  ここで、$\varepsilon_0 = 8.85418782*10^{-12} $[F/m] は真空の誘電率,  [F/m]=$[\frac{C^2}{N m^2}]$  。
+
-
この電気容量の式は、$Q = CV$の両辺に$d/S$をかけた式$\sigma d = CVd/S$に、$V = E d=\frac{\sigma}{\varepsilon_0}d $を代入して得られる式 $\sigma d = CEd^2/S$ に $E=\frac{\sigma}{\varepsilon_0} $ を代入し、Cについて整頓して得られる。
+
-
 
+
-
==== たくわえられるエネルギー====
+
-
コンデンサーに電荷$ Q_1 $を蓄えるのに必要なエネルギーEは、$ E = \frac{1}{2} Q_1 V_1 =\frac{1}{2} C {V_1}^2$ である。 ここで、$ V_1 $は、$ Q_1 = C V_1 $を満たす値。<br/>
+
-
その理由:横軸にQ,縦軸にVをとり、$V = Q/C $ のグラフ(直線)を書く。電荷q を$0 \le q \lt Q_1 $ とし、$dq $を非常に小さい値とする。電荷量を$q$から$q+dq $まで増やすのに必要なエネルギーを求めよう。<br/>
+
-
増加する電荷dqは微小なのでこの間、極板間の電圧$v = q/C $は殆ど増加しない。そこで、この時必要なエネルギーは$ d E =v dq=(q/C) dq$ と考えられる。(下記の注を参照のこと)<br/>
+
-
$V = Q/C $ のグラフでいえば、これは、Q軸と直交する2本の直線$ Q=q, Q=q+dq $ と直線$V=0 $(Q軸)、直線$V= Q/C$ で囲まれた領域の面積にほぼ等しい。
+
-
全エネルギーEは、$ q = 0 $ で $ d E $を求め始め、$q=0+dq $ 、 $q=0+2(dq)$ 、、、、と増やして$ q=Q_1-dq$ までの$ d E $を求め。加え合わせればよい。故にE は、Q軸と直交する直線$ Q=Q_1 $ ,直線$V = Q/C$とQ軸によって囲まれる3角形の面積になる。故に$ E = \frac{1}{2} Q_1 V_1 =\frac{1}{2} C {V_1}^2$ (終わり)<br/>
+
-
(注)数学が強い方は積分計算で簡単にEを求められる。
+
-
$ E =\int_0^{Q_1}(q/C)dq=[q^{2}/2C]_0^{Q_1}=Q_1^{2}/2C= C {V_1}^2/2$
+
-
 
+
-
=== 電界中の不導体と誘電分極 ===
+
-
不導体は、自由電子をもたないので電界のなかにおいても何の変化も起こさないように思える。しかし、
+
-
[[wikipedia_ja:マイケル・ファラデー|ファラデー]]は、コンデンサーの極板間に不導体をいれると、その容量が増すことを発見した。
+
-
==== ファラデーの発見した経験則と比誘電率 ====
+
-
コンデンサーの極板間の距離を $ d $、極板面積を$S$と置く。
+
-
厚さ$ d $、上底と下底の面積が$S$の不導体の板でコンデンサー極板間を隙間なく満たすと、コンデンサーの容量$C_{r}$ は$\varepsilon_r $倍に増える。
+
-
$C_{r} = \varepsilon_r C=\varepsilon_r \varepsilon_0  \frac{S}{d}$。 ここで、$ \varepsilon_r $は'''比誘電率'''といい、1以上の、誘電体に固有な値。
+
-
*[[wikipedia_ja:比誘電率|ウィキペディア(比誘電率)]]
+
-
$ \varepsilon_r \varepsilon_0 $を、この不導体の'''誘電率'''と呼び、$ \varepsilon $ で表す。  <br/>
+
-
 
+
-
極板間を完全には満たさない薄い不導体の板をいれても、その厚さに応じて、コンデンサーの容量は増加する。
+
-
 
+
-
===== 不導体表面に電荷が誘導される =====
+
-
ファラデーの発見した経験則をもとに、不導体に何が起こるのかを考察しよう。 <br/>
+
-
(1) 帯電増加量<br/>
+
-
極板間に不導体が入っていない時、両極板の間に電圧Vをかけると、極板にはそれぞれ$ \pm Q=\pm CV $の電荷が帯電する。<br/>
+
-
次に比誘電率$ \varepsilon_r $で厚さ$ d $の不導体をコンデンサー間に(隙間なく)挿入すると、両極板には、それぞれ$ \pm Q_{r}=\pm C_{r}V=\pm \varepsilon_r Q $の電気が貯まる。<br/>
+
-
増加した帯電量は、$ \delta Q=C_{r}V-CV= \varepsilon_r CV-CV=(\varepsilon_r-1)CV $ 。<br/>
+
-
 
+
-
 
+
-
(2) 両極板の電荷のつくる電界の大きさ<br/>
+
-
極板間に不導体が入っていない時、電荷は$ \pm Q=\pm CV $なので、極板の表面電荷密度は$ \pm \sigma =\pm Q/S=\pm CV/S $。これが極板間につくる電界$ \vec E $は、方向が正電極から負電極へむかう垂線の方向と一致し、大きさは、$E=\sigma/\varepsilon_0=Q/(S \varepsilon_0)$  <br/>
+
-
 
+
-
不導体を挿入した場合、電荷は$ \pm Q_{r}=\pm C_{r}V= \pm \varepsilon_r Q$なので、極板の表面電荷密度は$ \pm \sigma_{r} =\pm Q_{r}/S=\pm \varepsilon_r \sigma$。これが極板間につくる電界$ \vec E_{r} $は、方向が正電極から負電極へむかう垂線の方向と一致し、大きさは、$E_{r}=\sigma_{r}/\varepsilon_0=\varepsilon_r \sigma/\varepsilon_0=\varepsilon_r E$
+
-
 
+
-
(3) 正極板がわの不導体の表面に負電荷が誘導され、その逆符号の電荷が負極板側の表面に誘導される<br/>
+
-
不導体を挿入したときも、極板電圧Vは変えていないので、厚さdの不導体の内部の電界の大きさは、$ V/d=E $ となっているはずである。<br/>
+
-
もし不導体に何の変化もないならば、不導体内部の電界の大きさは(2)より、$E_{r}=\varepsilon_r E$ であり、内部電界が$ E $ であることと矛盾する。<br/>
+
-
これより正極板に接する不導体の表面に、正極で増加した帯電量を相殺する$ -\delta Q=-(Q_{r}-Q)= -(\varepsilon_r-1 )Q $の負電荷が誘導され、負極板に接する不導体の表面に、負極で減少した帯電量を相殺する$ \delta Q=(Q_{r}-Q)= (\varepsilon_r-1 )Q $の正電荷が誘導されることが類推できる。この時、極板とそれに接する不導体の表面に帯電する電荷は合計すると、$ \pm Q$となり、この電荷がつくる電界の大きさはEとなり、極板間電圧はEd=Vでうまくいく。<br/>
+
-
なお、不導体の正負の表面電荷は、電界が掛かっている時だけ現れ、掛からなくなると消失する。正と負の電荷のあらわれた不導体の部分を切って、2つに分けても、それぞれに正負同量の表面電荷があらわれ、正の電荷や負の電荷を取り出すこともできない。このように電界のなかで不導体の表面に現れる電荷は、真の電荷ではない。次の節で説明するように誘電分極という現象よって誘導された電荷なので、'''分極電荷'''といい、不導体のことを誘電体とも呼ぶ。
+
-
 
+
-
(4)誘電体の内部の電界は外部から作用する電界と分極電荷の作る電界の和であること<br/>
+
-
不導体の表面に誘導された電荷$ \mp \delta Q=(Q_{r}-Q)= \mp(\varepsilon_r-1 )Q $は,ガウスの法則を利用した、今まで何回も使った論法により、
+
-
誘電体の内部に電界をつくり、その大きさは、$ E_p= \delta Q/(S \varepsilon_0)=\sigma_p/\varepsilon_0$、ここで $\sigma_p=\delta Q/S =(Q_r-Q)/S=\sigma_r-\sigma$は不導体の表面の分極電荷の面密度で、'''分極電荷密度'''あるいは'''分極の大きさ'''という。電界の方向は、$ \vec E_{r}$と逆向き。<br/>
+
-
故に、$ \vec E_{r}+\vec{E_{p}}$の大きさは、$E_{r}-E_{p}=\sigma_{r}/\varepsilon_0-\sigma_p/\varepsilon_0= (\sigma_{r}-\sigma_p)/\varepsilon_0=(\sigma_{r}-(\sigma_r-\sigma))/\varepsilon_0=\sigma/\varepsilon_0 =E$で、向きは$ \vec E_{r}$の向きと等しい($\vec E$の向きと同じ)。故に、$ \vec E_{r}+\vec{E_{p}}=\vec E$
+
-
 
+
-
(5)誘電体に外部から作用する電界$ \vec E_{r}$,分極の大きさ$\sigma_p$と誘電体の内部の電界$\vec E$の関係<br/>
+
-
$\sigma_p=\sigma_r-\sigma=(Q_r-Q)/S=(C_r-C)V/S=(\varepsilon_r-1)CV/S=(\varepsilon_r-1)CEd/S$<br/>
+
-
上の式に$C = \varepsilon_0 \frac{S}{d}.......(9-9) $ を代入し、整頓すると、<br/>
+
-
$\sigma_p=(\varepsilon_r-1)\varepsilon_0 E$;分極の大きさと誘電体の内部の電界の関係  <br/>
+
-
$\vec E_{r}=\varepsilon_r \vec E$;誘電体に外部から作用する電界と誘電体の内部の電界の関係  <br/>
+
-
$\sigma_r=Q_r/S=C_rV/S=\varepsilon_r CEd/S$に$C = \varepsilon_0 \frac{S}{d}$ を代入し整頓すると、  <br/>
+
-
$\sigma_r=\varepsilon_0 \varepsilon_r E $あるいは
+
-
$E=\sigma_r/\varepsilon_0 \varepsilon_r  $;比誘電率$\varepsilon_r $の不導体を挿入したコンデンサーの電極電荷と不導体内部の電界の大きさの関係。<br/>
+
-
 
+
-
==== 誘電分極 ====
+
-
では、何故コンデンサーの電極間に挿入された(電界のかかった)不導体の表面に、電荷が現れるのだろうか?  <br/>
+
-
電界が掛かると誘電体を作っている原子の中の電子達(負電荷-q)と原子核(正電荷;+q)は電界から互いに逆の力をうける。<br/>
+
-
不導体では(自由電子がなく)すべての電子は原子核と電気力で引き合っている(ばねで引き合っているかのように)。<br/>
+
-
このため電界の大きさに比例して上流側に電子が、下流側に原子核がづれて、電界からの力と電気力が釣り合ったところで止る。<br/>
+
-
づれた電子達の電荷総量$ -q $の重心から原子核の重心へのベクトルを $\vec d$と置くと、<br/>
+
-
その向きは、多くの元素では、電界の向きと一致する。<br/>
+
-
誘電体の各原子は双極子モーメント$\vec{p}=q\vec{d}=qd\vec{E}/E$を持つ、電気双極子になる。 <br/>
+
-
この現象を'''誘電分極(dielectric polarization)'''という。  <br/>
+
-
単位体積中の双極子モーメントの和を $\vec{P}$ と書き、'''単位体積あたりの双極モーメント'''と呼ぶ。<br/>
+
-
不導体の単位体積中の原子数をNとすると、$\vec{P}=Nq\vec{d}=Nqd(\vec{E}/E)$  <br/>
+
-
 
+
-
*[[wikipedia_ja:誘電分極|ウィキペディア(誘電分極)]]を参照のこと。<br/>
+
-
誘電体の各原子が、向きの揃った電気双極子になると、<br/>
+
-
誘電体の表面にある原子の中でも、電子は電界$\vec{E} $ と逆向きに、原子核は$\vec{E} $ の方向に少しずれ、両者は距離$d=||\vec{d}|| $だけずれるので、<br/>
+
-
電気力線の上流側の誘電体の表面には、負電荷が現れ、下流側($\vec{E} $ の方向)の誘電体表面には、正電荷が現れる。<br/>
+
-
誘電体の内部は、誘電体の外部から見る限り、正負の電荷が打ち消し合って、電気を持たないように見える。<br/>
+
-
 
+
-
この現象を巨視的にながめよう。<br/>
+
-
一つの原子は移動可能電荷$\pm q $をもち単位体積中にN個の原子があるので、不導体中には単位体積あたり$\pm Nq $の電荷が(流体のように)一様に分布している。<br/>
+
-
電界のかからないときは、正と負の電荷が、ぴったりかさなって、打ち消し合い帯電してないようにふるまうが、<br/>
+
-
電界がかかると負電荷は電界の上流側に全く形を変えないで少し移動し、正電荷は電界の下流方向に少し移動(負電荷からみると正電荷は$\vec{d}$だけ移動)し、<br/>
+
-
不導体のそれどれの表面に電荷があらわれる。<br/>
+
-
この議論から、分極電荷は表面から、いくらかの厚さをもった部分に現れることがわかったが、非常に薄いので、表面に分布する電荷のように扱える。
+
-
 
+
-
===== 単位体積あたりの双極モーメントが$\vec{P}$ の不導体の表面の分極電荷密度 =====
+
-
コンデンサーの例で、考える。 <br/>
+
-
極板間に挿入された不導体に極板電荷のつくる電界が作用して不導体の原子が分極して、$q\vec{d}$という双極モーメントを持つとする。<br/>
+
-
単位体積あたりの双極モーメントは、単位体積当たりの原子数をNとして、$\vec P=Nq\vec{d}$となる。 <br/>
+
-
導体の各表面の$\vec{d}$方向(多くの不導体では$\vec{E}$方向に同じ)に長さ$d$の範囲にわたって電荷が誘導される。 <br/>
+
-
正の極板に接する不導体の面は、$\vec{d}$と直交するので、深さ$d$までの領域が負に帯電。 <br/>
+
-
 
+
-
不導体の単位表面あたりの深さdまでの体積は$d$なので、電荷密度-Nqをかけて、$-Nqd=\vec{P}$がこの浅い領域の誘導電荷量となる。 <br/>
+
-
この電荷は、$d$が小さいので、表面電荷密度とみなす。 <br/>
+
-
 
+
-
同様に、負の極板に接する不導体の面では、$ Nqd = ||\vec{P}|| $が表面電荷密度。 <br/>
+
-
他方、$\sigma_p$は電極に接する不導体表面に現れる誘導電荷密度を表したので、$\sigma_p = Nqd = ||\vec{P}|| $。<br/>
+
-
これが、単位体積あたりの双極モーメントが$\vec{P}$ の不導体の表面の分極電荷密度である。 <br/>
+
-
 
+
-
次に一様な電界$\vec{E}$に、任意の方向に置かれた誘電体の単位体積あたりの双極モーメントが$\vec{P}$であるとき、誘電体の表面に現れる分極電荷を算出しよう。 <br/>
+
-
 
+
-
誘電体の表面の単位長の外法線(表面に直交し、誘電体内部から外部に向かう、単位長さのベクトル)を$\vec{n}$と書くと、 <br/>
+
-
 
+
-
その表面に現れる、分極電荷の面密度$\sigma_p$ は、$\vec P \cdot \vec n$
+
-
であることが導ける。  <br/>
+
-
 
+
-
===== 電束と電束密度=====
+
-
電荷Qの作る電界中に不導体があると、<br/>
+
-
電界の下流側と上流側の面にそれぞれ正、負同量の分極電荷が現れて、電荷Qの作る電界を弱める電界をつくり、<br/>
+
-
不導体中の電界は、両者の和になる。<br/>
+
-
このため、不導体中の電界は外部の電界より弱くなる。電気力線の本数は、電界の強さに比例するようにとりきめたので、不導体の中では本数は急減してしまう。<br/>
+
-
このため、電荷を内部に含む立体の表面の一部あるいは全部が不導体に含まれる場合、立体表面を貫く電気力線の本数は$\frac{Q}{\varepsilon_0} $より少なくなってしまい、[[http://ja.iwschool.org/wiki/index.php?title=%E7%89%A9%E7%90%86/%E9%9B%BB%E6%B0%97%E3%81%A8%E7%A3%81%E6%B0%97(%EF%BC%91)_%E9%9D%99%E9%9B%BB%E6%B0%97%E3%81%A8%E9%9B%BB%E7%95%8C%E3%80%81%E9%9D%99%E7%A3%81%E6%B0%97&action=edit&section=24| ガウスの法則]]は成り立たないように見える。<br />
+
-
しかし、これは電界が分極電荷のつくる電界も加えたものなのに電荷は分極電荷をくわえてないためにおこった現象であり、<br/>
+
-
電荷として真の電荷だけでなく分極電荷も考慮すれば、ガウスの法則は成立する。<br />
+
-
「立体を貫く電気力線の本数は$\frac{Q+Q_{p}}{\varepsilon_0} $となる。<br />
+
-
 ここで$Q_{p}$は、この立体に含まれる分極電荷の総量。しかし$Q_{p}$は測定も難しく、この方法は手間がかかる。<br/>
+
-
そこで電気力線に代わって不導体中でも量の変わらないものを考え、ガウスの法則をその量を使って記述することを考える。<br />
+
-
====== 点電荷の電束と電束密度 ======
+
-
点電荷qがある時、そこから(実際には流れるものはないが)qに等しい流体のようなものが湧き出し、電気力線にそって色々な方向に流れると考える。<br/>
+
-
各方向への流量は、電界の強さに比例して配分されると考える。この流れを電束といい、その量を電束量と呼ぼう<br/>
+
-
 
+
-
真空中に置かれたqを中心とする半径rの球面S上での単位面積当たりの電束量を求めよう。<br/>
+
-
qという量の電束が点電荷から湧き出し、放射状の電界にそって流れ出し、球面Sを通り抜けるが、<br/>
+
-
この球面上では、電界の大きさは等しい(E=$q/4\pi r^2 \varepsilon_0$)ので、どの方向にも等しい密度で流れることがわかる。<br/>
+
-
そこで球面Sの単位面積当たりの電束量は、qをSの面積で割った、$q/4\pi r^2$となる。 これは、$\varepsilon_0 E$に等しい。
+
-
 
+
-
次に、電束の密度と方向を与える、電束密度ベクトル(通常は単に電束密度と呼ぶ)を次のように定める。<br/>
+
-
電荷qを原点とする位置ベクトル$\vec r$の点での電束密度$\vec D$とは、<br/>
+
-
ベクトルの方向は電気力線の向き(=電界の向き)、<br/>
+
-
その大きさは、その点をとおり、電気力線と直交する小平面$ds$をとり、そこを単位面積あたりとおり抜ける電束の量<br/>
+
-
で定義する。<br/>
+
-
$ds$は小さく、電気力線と直交するので、qを中心とする半径r=$||\vec r||$の球面にほぼ、のっているため、球面の一部と考えてよい。<br/>
+
-
前述の議論からここを通りぬける電束量は、単位面積当たり、$\varepsilon_0 E=q/4\pi r^2$である。<br/>
+
-
これは、$\varepsilon_0 \vec E $ が電束密度であることを示している。
+
-
 
+
-
真空中のガウスの法則は、Vを球や立方体などの立体、Sをその表面(=閉曲面)とすると、<br/>
+
-
$\varepsilon_0 \vec E $ の外法線成分のS全体での平均値×面Sの面積=q;qがVの内部のとき。   =0;qがVの外部のとき。<br/>
+
-
であった。<br/>
+
-
電束密度Dを用いて表現すると<br/>
+
-
$D$ の外法線成分のS全体での平均値×面Sの面積=q
+
-
====== 真空中の多数の点電荷の電束と電束密度 ======
+
-
点電荷の集まりである電荷Qの作る電界Eは、<br/>
+
-
重ね合わせの原理から、<br/>
+
-
それぞれの点電荷の作る電界$E_{q}$ のなので、<br/>
+
-
Eの作る電束も、$E_{q}$ の作る電束の和となり、<br/>
+
-
電束密度は、$D=\varepsilon_0 \vec E=\sum_{q}\varepsilon_0 \vec E_{q}$
+
-
====== 誘電体中の多数の点電荷の電束密度 ======
+
-
真空以外の不導体の媒質中の場合、不導体の原子が電荷の作る電界によって、多かれ少なかれ誘電分極して、かってに分極電荷を持ってしまうため、<br/>
+
-
ガウスの法則は、この電荷を考慮して、<br/>
+
-
$\varepsilon_0 \vec E $ の「Vの外法線」成分のS全体での平均値×面Sの面積=
+
-
V内の電荷量Q+V内の分極電荷$Q_p$ <br/>
+
-
としなければならない。<br/>
+
-
$Q_p$は測定も難しく、どこに発生するかも、分かりにくいので、これを扱いやすくしよう。<br/>
+
-
まず、分極ベクトル(単位体積あたりの双極モーメント)$\vec{P}=Nq\vec{d}$  が分かる場合;<br/>
+
-
立体Vの内部に現れる分極電荷の総量は<br/>
+
-
$-\vec P$の「Vの外法線」成分の、S上の平均値×Sの面積<br/>
+
-
となる。<br/>
+
-
何故なら
+
-
<br/>
+
-
これを前述のガウスの法則の式に代入して、<br/>
+
-
$\varepsilon_0 \vec E+\vec P $ の「Vの外法線」成分のS全体での平均値×面Sの面積=V内の電荷量Q<br/>
+
-
分極電荷$Q_p$ を使わないで、ガウスの法則が記述できた。<br/>
+
-
しかし、$\vec{P}=Nq\vec{d}$ も知ることは難しい。<br/>
+
-
多くの不導体では、、$\vec{P}$ は$\vec{E}$と同じ向きになり、比誘電率$ \varepsilon_r $の誘電体では、$\vec{P}=(\varepsilon_r -1)\varepsilon_0 \vec E$ であった。
+
<br/>
<br/>
-
これを上式に代入すると、<br/>
+
一様で一定の磁界(磁束密度$\vec{B}$)中を、これと垂直に長さlの導体の棒を速度$\vec{v}$で平行移動させる場合に、平衡状態の電界$\vec{E}$を求めよう。<br/>
-
$\varepsilon_r \varepsilon_0 \vec E $ の「Vの外法線」成分のS全体での平均値×面Sの面積=V内の電荷量Q<br/>
+
平衡状態では電荷にかかる2つの力の合力は零なので、$\vec{E}(-e)-e\vec{v}\times \vec{B}=0$が成立する。 <br/>
-
となる。
+
両辺を -e で割れば、$\vec{E} +\vec{v}\times \vec{B}=0$ <br/>
 +
ゆえに、$ E = |\vec{E}|$
 +
とおくと、$ E = |\vec{v}\times \vec{B}|=vB\sin(\pi/2)=vB$
 +
ゆえに、$ E = vB$。これが導体の棒に発生する電界である。棒の長さを
 +
$l$とすると、棒の両端間の電圧は、$ V=El=vBl $である。

2016年9月6日 (火) 16:36時点における版

目次

解説

電流と磁界

この節では静止した電荷でなく動く電荷の性質をしらべる。

電流

電荷の流れを電流という。
多くの場合は、導体中の自由電子が動いて電流となる。
電解液(イオン溶液ともいう)では、正負のイオンが動いて電流となる。
電流によって電荷は移動し、後に学ぶように、磁界を発生する。

直流電流・電圧と交流電流・電圧

時間がたっても向きも大きさも変化しない、電流のことを(狭義の)直流電流、電圧のことを(狭義の)直流電圧という。単に方向だけを変えない電流を(広義の)直流電流、同じく電圧を、(広義の)直流電圧という。
これに反して、時間とともに方向を変える、電流、電圧を、それぞれ、(広義の)交流電流、交流電圧という。さらにその大きさが、時間とともに三角関数にしたがって変化する時、(狭義の)交流電流、交流電圧という。以下を参照のこと。

電流の向きと大きさの単位

電流の向きは、正の電荷の流れる向きと定める。
電子が移動する電流のばあい、電流の向きとは逆に電子は動いている。
電流の大きさ(略して電流)は、平行電流が及ぼしあう力(後に学ぶ)によって定められ、アンペア[A]という単位でよばれる。

電流が作る磁界

電流は磁界をつくる。エルステッドは1820年に電流は方位磁針を動かす磁界を作り出すことを発見。 本節では電流は直流電流に限定する。ゆっくりと変動する電流にたいしても、近似的に同様の性質が成り立つ。

無限に長い直線導線に電流Iを流す時にできる磁界$ \vec{H} $

実験によると、任意の点Pの磁界$ \vec{H(P)} $ は、大きさは、電流の大きさ I に比例、電流からP点までの距離 r に反比例し、向きは、導線とP点を含む平面に直角で、右ねじの進行方向を電流の方向と一致させたときの、ねじの回転する方向である。

アンペールの研究 

アンペールは、詳しい実験と考察により、任意の形状の電流の作る磁界に関するアンペールの法則を明らかにした。
この過程で、実験により、次の重要な原理を発見した。

磁界の重ね合わせの原理

電流$ I_1$ がP点に作る作る磁界を$ \vec{H_1(P)}$,電流$ I_2$ がP点に作る作る磁界を$ \vec{H_2(P)}$ とすると、
2つの電流$ I_1$と $ I_2$ が同時に流れた時にP点に作る作る磁界は$ \vec{H_1(P)}+\vec{H_2(P)}$

環状の電流は磁石のようにふるまう

電流が流れている環状の線が作る磁場は、環の大きさに比べて十分離れたところでは、この環を縁とする板磁石のつくる磁界と同じになる。

アンペールの法則

アンペールは,実験で明らかにした以上の事実から、次のような重要な法則を導いた。

この記述中の「閉じた経路にそって磁場の大きさを足し合わせ」た値は、この経路にそって1Wbの磁荷を一周するとき磁荷が磁界から受ける仕事と同じ値である。
この値がこの閉路を貫く電流 I に等しくなる、というのがアンペールの法則である。 
この電流 I の向きは、電流の向きに進む右ねじの回転方向が、磁荷が閉路を一周するときの回転方向と一致するように定める。
なお、アンペールの法則の導出は少し難しいので、高校では扱わない。

アンペールの法則の応用

アンペールの法則を用いると、対称性をもついろいろな電流の作る磁界が、実験をしなくても、数式の計算だけで求められる。

 無限に長い直線導線に電流Iを流す時にできる磁界$ \vec{H} $ 

直線電流から無限に離れた点の磁界は零と仮定してよい。 直線電流を軸とした回転で対称な現象なので、$ \vec{H} $は、導線からの距離 r が等しい場所の電界は、この軸の周りの回転で一致するため、大きさはすべて等しい。この値を$ H(r)$と書く。
任意の点Pに電流 I がつくる磁界を$ \vec{H_I}$とすると重ね合わせの原理から、同じ大きさの電流を逆に流すとき、P点の磁界は$ \vec{H_{-I}} = -\vec{H_I}$。 これを上下逆にしてながめると、対称性から$ \vec{H_I}$ とおなじにみえなければならないので、$ \vec{H_I}$は、P点を始点として、$ \vec{O(P)P} $と直交したベクトルである(ここでO(P)はP点から直線電流におろした垂線の足)。
さらに直線状の導線から距離$r_1$と$r_2$にある長さ$l$の線分を対辺とする長方形にアンペールの法則を用いると「$\vec{ H_I}$のIと平行な成分」は電流からの距離に無関係な値になることが分かる。無限遠点では零なので、どこでも零であることが分かる。ゆえに磁界は電流と直交。
その向きは、「電流と垂直に交わり、かつ、電流を中心とする半径 r の円」の接線の、(電流の方向に進む)右ねじの回転方向である。従って、この円に沿って1Wbの磁荷を一周させるとき、磁荷の受ける仕事は、$ 2\pi r H(r) $となる。アンペールの法則から、 $ I=2\pi r H(r)$ ∴$ H(r)=I/2 \pi r$

ソレノイドの作る磁界

円筒形の長い中空の筒に導線を一様に密にまいたコイルをソレノイドという。1mあたりn巻きしているとする。これに電流Iを流した時にできる磁界を求めよう。 
厳密な解は難しいので、近似解をアンペールの法則から求めよう。
コイルを流れる電流はコイルの各場所で右ねじの方向の磁界を発生させる。これらがある場所では強めあい、他の場所では弱めあって、現実の磁界が出来る。
ソレノイドの外側の側面の近くの磁界は、反対側の側面の電流のつくる磁界と弱めあい、ほぼ零。
ソレノイドの内側の磁界はつよめあうので大きい。ソレノイドが、その軸のまわりの回転に関して対称なので、磁界の方向はソレノイド軸と平行で、磁界の大きさは、軸からの距離の等しいところでは同じ。
さらに軸からの距離に関係なく同じ大きさ(Hと書く)であることが、アンペールの法則から、次のように証明できる。
軸に平行で、軸からの距離$ r_1$と軸からの距離$ r_2$の長さlの線分を対辺とする、ソレノイド内部の長方形を考えろ。これにそって1Wbの磁荷を動かす時に磁荷の受けるエネルギーは、この長方形を貫く電流の大きさ零に等しい。これより導ける。
内側の磁界の大きさは、H=nI。 何故なら、ソレノイドの軸と平行で長さがlの2本の線分(一方はソレノイドの外側で側面に近いもの、他方はソレノイド内部)を対辺とする長方形を考え、これにアンペールの法則を適用すれば、これを一周する1Wbの磁荷のうける仕事=Hl,これがこの長方形を貫く電流総和=nlI に等しい。

もっと一般の電流の作る磁界

アンペールの法則から直接計算するのは難しい。アンペールの法則と磁界の重ね合わせの原理から、磁界計算に大変都合のよい、ビオ・サバールの法則がえられる。これについては大学で学ぶ。興味のある方は

をご覧ください。

磁界が電流に及ぼす力

アンペールは、電流は磁石に力を与えるので、(作用・反作用の原理から)磁石は電流に力を与えるはずであると考えた。
さらに電流は磁石と同じ作用を持つので、電流は電流に力を及ぼすと考え、実験で次の事実を明らかにした。

2本の平行な直線状の電流が及ぼしあう力

2本の平行な導線に、それぞれ電流$I_1,I_2$を流すと、それらの電流の単位長さあたりには、次のような力$ \vec{F}$が働く。
大きさは$F = k\frac{I_1 ,I_2}{R}$, , ,(1)
ここでR は平行線間の距離、kは正の比例定数。Fの単位は[N/m]
力$\vec{F}$の向きは、
$I_1$と$I_2$が同じ向きならば相手の電流から引力をうけ、相手の導線へおろした向きつき垂線とおなじ向き、
電流の向きが異なるならば斥力で、相手の導線へおろした向きつき垂線と逆の向きとなる。
この事実にもとずいて、次のように、電流の単位が定められる。

電流の単位アンペア[A]

等しい強さの2本の平行な直線状の電流を1m 離しておいた時、それぞれの平行線に1mあたり、$2 \times 10^{-7} N/m $ の力が作用する時1Aと決める。
すると(1)式より、$2 \times 10^{-7}[N/m] = k\frac{1[A^2]}{1[m]}$, 故に比例定数は、$k=2\times 10^{-7}[N/A_2]=\frac{\mu _0}{2 \pi}$。ここで、$\mu _0= 4 \pi\times 10^{-7}[N/A^2]$は真空の透磁率とよばれる。

平行電流に働く力の近接作用による表現

電流$I_1$は、電流$I_2$が作った磁界から力を受けると考え、1mあたりに働く力の大きさFを、$F = \frac{\mu _0}{2 \pi}\frac{I_1 ,I_2}{R}= I_1 \mu_0 \frac{I_2}{2 \pi R} $と変形。直線電流$I_2$が作る磁界は、電流$I_1$のところでは、大きさが$ H_{I_2}{(R)}=I/2 \pi R$ であり、$I_1$と直交している。そのため$F = I_1 \mu_0 {H_{I_2}{(R)}}=I_1 \mu_0 {H_{I_2}{(R)}}\sin(\pi/2)$ と書ける。

 磁束密度と磁束

$ \vec{B} = \mu_0 \vec{H}$ で、磁束密度という変量を導入する。すると、磁束密度$\vec{B}$と直交する電流 I には1mあたり、 $F = I|\vec{B}|= I|\vec{B}| \sin(\pi/2)$ の力が働く。
9章で学んだ磁力線の本数を、$\vec{B}$と直交する単位面積(1㎡)あたりB(=$|\vec{B}|$)本書くとする。すると、磁力線と直交する面積 S には、$ \Phi=BS $ 本の磁力線が貫くことになる。つらぬく磁力線の総本数$ \Phi $ を磁束と呼ぶ。 
点Pでの磁束密度$\vec{B(P)}$は、その点での磁力線の方向と磁束の密度を表す。
磁束密度については

を参照のこと。

 磁界中の電流がうける力

① 磁界が同じならば、それが何によって作られたものであるかに関係なく同じ力をうけるはずである。
したがって磁界$H$に直行する電流$I$の受ける力は、
1mあたり$F=\mu_0IH=IB$の大きさで、
向きは、電流の向きから磁界の向きへと右ねじを回す時のねじの進行方向。
② それでは、磁界と電流が直交しないときに受ける力はどうなるのだろうか。
実験によると磁界と電流が平行ならば、電流は磁界から力を受けないことが確かめられる。
これら2つの事実から、電流と磁界のなす角度を$\theta$ とすると、
磁界中の電流に働く、単位長さ当たりの、力$ \vec{F}$は、
大きさが$F=\mu_0IH\sin\theta=IB\sin\theta$
向きは、電流の向きから磁界の向きへと右ねじを回す時のねじの進行方向,のベクトル
であることが示せる。

ベクトル積またはクロス積

電流が磁界から受ける力$ \vec{F}$は、以下の、ベクトル積(クロス積とも呼ばれる)を使うと正確に、簡単に記述できる。

これを用いると、磁界から電流の受ける力は,1mあたり、
$ \vec{F}=\mu_0\vec{I}\times\vec{H}=\vec{I}\times\vec{B} \qquad \qquad \qquad \qquad \qquad \qquad $ (10-1)
ここで、 $ \vec{I}$ は、大きさが$I$で、方向が電流の方向と一致するベクトルで、電流ベクトルと呼ばれる。

ベクトル積の性質

$ \vec{a},\qquad \vec{b},\qquad \vec{c}$を2次元あるいは3次元ベクトルとする。
性質0.$ \vec{a} $ を, $ \qquad \vec{b} $と垂直な成分$ \vec{a_\perp}$ と, 平行な成分$\vec{a_\parallel}$ の和に分解するとき、
$\qquad \qquad \qquad \vec{a} \times \vec{c}= (\vec{a_\perp}+\vec{a_\parallel})\times \vec{c}=\vec{a_\perp} \times \vec{c}$
性質1.$ \vec{a} \times \vec{b}= -\vec{b} \times \vec{a}$
性質2.$ (\vec{a}+ \vec{b})\times \vec{c}= \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$ 
性質3.$(e_1,e_2,e_3)$ をそれぞれ長さ1で互いに直交し、右手系をなす、ベクトルとする。この時、
$\qquad \qquad \qquad e_1 \times e_2 = e_3, \qquad e_2 \times e_3 = e_1, \qquad e_3 \times e_1 = e_2$
性質0の証明;ベクトル積の定義から明らかである。
性質1の証明;ベクトル積の定義から明らかである。
性質2の証明;① $ \vec{a},\qquad \vec{b}$ と$ \qquad \vec{c}$ が直交する場合。
$\vec{a} \times \vec{c} $は、$ \vec{a} $を、$\vec{c} $と垂直な平面H内で90度回転(右ねじを$\vec{a}$から$\vec{c}$へ回した時の進行方向)して、長さを$c=|\vec{c}|$倍したベクトル。$\vec{b} \times \vec{c} $は、同じ平面H内で$ \vec{b} $を、同じ方向に、90度回転して、長さを$c=|\vec{c}|$倍したベクトル。$ (\vec{a}+ \vec{b})\times \vec{c}$も、同じ平面内を同じ向きに90度回転し、長さを$c=|\vec{c}|$倍したベクトル。従って$ \vec{a}$と$\vec{b}$から作られる平行四辺形と$\vec{a}\times \vec{c} $ と$\vec{b}\times \vec{c} $からつくられる平行四辺形は相似となり、$ (\vec{a}+ \vec{b})\times \vec{c}= \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$が示せる。 
② 一般の場合。
性質0より、$\perp$ を$ \qquad \vec{c}$と垂直な成分を表すとすると、 $ (\vec{a}+ \vec{b})\times \vec{c}= (\vec{a}+ \vec{b})_\perp \times \vec{c} \qquad \qquad \qquad $(1)
$(\vec{a}+ \vec{b})_\perp =\vec{a}_\perp +\vec{b}_\perp$なので、(1)式は、
$ = (\vec{a}_\perp +\vec{b}_\perp) \times \vec{c}$,①より、
$ = \vec{a}_\perp \times \vec{c}+\vec{b}_\perp\times \vec{c}=\vec{a} \times \vec{c}+\vec{b} \vec{c}$。証明終わり。
性質3の証明;ベクトル積と$(e_1,e_2,e_3)$ の定義から、明らかである。 

応用;電動機

ローレンツ力

磁界中では電流は力を受ける事が分かった。電流とは運動する電荷なので、運動する電荷は磁界から力を受けることになる。
それでは、速度$\vec{v}$ で運動する電荷$e$はどのような力を受けるのだろうか。 
電流に働く力から、この力を導こう。
導線の断面積をS[$m^2$]とし、そこを電荷$e(\gt 0)$が、電流方向に速さ v[$m/s$]で運動(実際には電荷$-e$ の自由電子が、電流と逆方向に速さvで運動)しているとする。自由電子の密度をn[個/$m^3$]とする。

電流 I と電荷の速さ v との関係

電流が$I[A]$なので、定義から導線のある断面を通過する電荷量は毎秒$I[C/s]$, 他方、その断面を通過する電荷の個数は毎秒$Svn$個である。 ∴ $I=Svne$  

一個の電荷が磁界から受ける力

従って、電流ベクトル$\vec{I}$ と電荷の速度ベクトル$\vec{v}$ の間には、$\vec{I}=Sne\vec{v}$ 
(10-1)式の右辺に、上式を代入すると、 $ \vec{F}=Sne\vec{v}\times\vec{B} $
これが導線1mの受ける力であるが、導線1m中には電荷は$Sn$個あるので、一個の電荷(速度$\vec{v}$)の受ける力は、
$ \vec{f}=e\vec{v}\times\vec{B} $

ローレンツの法則

電界$ \vec{E} \ $,磁束密度 $ \vec{B} \ $の中を、速度$ \vec{v} \ $で運動する電荷 q は、 $ \vec{f}=q(\vec{E}+\vec{v}\times\vec{B}) $ の力を受ける。これをローレンツの法則という。
電荷に働く電磁気的な力は、必ずローレンツの法則を満たすことが実験で確かめられている。 
次の解説を参照のこと。

一様な静磁界のなかの荷電粒子の運動

一様な磁界(磁束密度$\vec{B}$が一定)の中で、電荷 q はどのように運動するか、調べよう。但し重力の影響は無視する。
電荷の時刻tでの位置を$\vec{r(t)}$,その時の速度を$\vec{v(t)}$ 、加速度を$\vec{\alpha(t)}$とおくと、粒子の運動方程式は
$m\vec{\alpha}=m*d\vec{v}/{dt}= q\vec{v(t)}\times\vec{B}\qquad \qquad \qquad $ (1) 
磁界に垂直に電荷を速さvで入射する。
「上式の右辺で表される電荷の受ける力」の方向は電荷の速度ベクトル$\vec{v(t)}$ と磁界$\vec{B}$ の双方に垂直で、右ねじを速度ベクトルから磁界のほうに回した時のねじの進行方向である。電荷は受ける力の方向に向きを変えるので、絶えず磁界に垂直な方向に向きを変える。従って、電荷は磁界と垂直な1つの平面上を向きをかえながら進行する。
この間電荷は、進行方向に直角の力を受け続けるので、電荷は磁界からエネルギーを受け取らない。従って、運動エネルギー保存則より、電荷の速さは入射時の速さvを保持する。
したがって、電荷は進行方向と直角の方向に、大きさが一定qvBの力を受け続けて等速 v で運動するので、曲がり方も絶えず一様となり、等速vで円軌道を描くことが分かる。この半径を r と書くと、「2章 力学(1) 速度、加速度とヴェクトル」の「2.2.2.3 等速円運動の加速度」の式から、加速度の大きさは$\alpha={v^2}/{r}$であり、また、(1)式の両辺のベクトルの大きさが等しいことから$m\alpha= qvB$なので、半径は$r=mv/(qB)$ である。

磁界中を動く導体に発生する起電力

導体は膨大な個数の正電荷(原子核)と負電荷(電子)を持っている。導体を磁界中で動かすとこれらの電荷は、磁界中を動くことになり、磁界からローレンツ力を受ける。
大部分の電荷はお互いにしっかり結合して金属を構成しているため動かないが、自由電子は自由にうごけるので、磁界からうける力の方向に移動する。
こうして、磁界中を動く導体には、起電力(電気を流す力)が発生する。

磁界中を動く導体の棒に発生する電界

導体の棒を磁界中で動かすと起電力が発生し、自由電子は移動する。自由電子が貯まって行く側は負に帯電し、反対側は自由電子が少なくなるので、正に帯電していく。
すると導体内に電界が発生し急速に強くなっていく。それに伴い導体内の自由電子は、この電界から、ローレンツ力と逆向きで、急速に増加する力を受けるので、瞬時に2つの力がつりあい、自由電子の移動が止まり、平衡状態になる。

一様で一定の磁界(磁束密度$\vec{B}$)中を、これと垂直に長さlの導体の棒を速度$\vec{v}$で平行移動させる場合に、平衡状態の電界$\vec{E}$を求めよう。
平衡状態では電荷にかかる2つの力の合力は零なので、$\vec{E}(-e)-e\vec{v}\times \vec{B}=0$が成立する。
両辺を -e で割れば、$\vec{E} +\vec{v}\times \vec{B}=0$
ゆえに、$ E = |\vec{E}|$ とおくと、$ E = |\vec{v}\times \vec{B}|=vB\sin(\pi/2)=vB$ ゆえに、$ E = vB$。これが導体の棒に発生する電界である。棒の長さを $l$とすると、棒の両端間の電圧は、$ V=El=vBl $である。

個人用ツール