MathJax
提供: Internet Web School
(版間での差分)
(→memo, testing...) |
(→memo, testing...) |
||
(間の2版分が非表示) | |||
60 行: | 60 行: | ||
== memo, testing... == | == memo, testing... == | ||
+ | 関数<br/> | ||
$$ | $$ | ||
- | f(x,y) = \left\{ | + | f(x,y) =\left\{ |
\begin{array}{ll} | \begin{array}{ll} | ||
- | + | \frac{x^3y}{x^2+y^2} & ((x,y) \neq {\bf 0}) \\ | |
- | + | 0 & ((x,y)={\bf 0}) | |
- | \end{array} \right | + | \end{array} \right. |
- | $$ | + | $$<br/> |
- | + | を考える。 | |
+ | |||
+ | $$\int x^a dx = \frac{1}{a+1}x^{a+1}+C. \quad (a \ne -1)$$ | ||
[[en:MathJax]] | [[en:MathJax]] | ||
[[ja:MathJax]] | [[ja:MathJax]] |
2017年12月19日 (火) 11:29 時点における最新版
目次 |
MathJaxプラグインによる数式表示
inline equation
This is a sample equation : $\sqrt{x^2+y^2} = z$
$\sqrt{x^2+y^2} = z$
blocked equation
$$\int x^a dx = \frac{1}{a+1}x^{a+1}+C. \quad (a \ne -1)$$
$$\int x^a dx = \frac{1}{a+1}x^{a+1}+C. \quad (a \ne -1)$$
multiple-line blocked equations
- $e^{i \theta} = \cos \theta + i \, \sin \theta\\ e^{\pi i} + 1 = 0$
$e^{i \theta} = \cos \theta + i \, \sin \theta\\ e^{\pi i} + 1 = 0$
SIZE feature
\small
- $\small e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$
$\small e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$
normalsize
- $e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$
$e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$
\large
- $\large e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$
$\large e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$
\Large
- $\Large e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$
$\Large e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$
\LARGE
- $\LARGE e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$
$\LARGE e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$
\Huge
- $\Huge e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$
$\Huge\blue e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$
MathJax homepage
test page (using .js) -http://cdn.mathjax.org/mathjax/latest/test/sample-tex.html
MediaWiki extensions/MathJax.php plugin
http://www.mediawiki.org/wiki/Extension:MathJax
LaTeX Math. symbols
memo, testing...
関数
$$
f(x,y) =\left\{
\begin{array}{ll}
\frac{x^3y}{x^2+y^2} & ((x,y) \neq {\bf 0}) \\
0 & ((x,y)={\bf 0})
\end{array} \right.
$$
を考える。
$$\int x^a dx = \frac{1}{a+1}x^{a+1}+C. \quad (a \ne -1)$$