Loading [MathJax]/jax/element/mml/optable/MathOperators.js

物理/解析入門(3)関数列の項別の積分・微分、 級数・冪級数及び可微分関数のテイラー展開

提供: Internet Web School

(版間での差分)
( 関数の一様ノルム)
( 関数の一様ノルム)
21 行: 21 行:
定義<br/>
定義<br/>
集合A上で定義されたRm値の関数の列 (fn)nNが<br/>
集合A上で定義されたRm値の関数の列 (fn)nNが<br/>
-
この関数列が A上で定義されたRm値の関数f に一様収束するとは、<br/>
+
A上で定義されたRm値の関数f に一様収束するとは、<br/>
-
$\lim_{n \to \infty}\|f-f_n\|_{\infty} = 0 <br/><br/>
+
$\lim_{n \to \infty}\|f-f_n\|_{\infty} = 0$ <br/><br/>
定理<br/>
定理<br/>
n次元空間の部分集合A上で定義されたRm値の連続関数の列が一様コーシー列をなすならば、連続関数に一様収束する。<br/>
n次元空間の部分集合A上で定義されたRm値の連続関数の列が一様コーシー列をなすならば、連続関数に一様収束する。<br/>

2018年4月22日 (日) 10:57時点における版

目次

[非表示]

 「 8.4 解析入門(3)関数列の項別の積分・微分、 級数・冪級数及び可微分関数のテイラー展開

 序

 関数列・関数族の項別積分と項別微分

 関数列の各点収束 

 関数列の一様収束 

 関数の一様ノルム

定義(有界関数と一様ノルム)
集合A上で定義され、Rmの値をとる関数fを考える。
1)関数fが有界とは、
fの値域{f(a)|aA}(Rm)Rmの有界集合であること。
すなわち、ある正数Mが存在し、f(a)<M(foraA)。(注参照)
2)有界関数fの一様ノルムfとは
f
(注) m次元ベクトルのノルムとしては通常はユークリッドノルム(2乗ノルム)を用いるが、
p乗ノルム(p \geq 1)や無限大ノルムでも良い。
一般のノルムの定義とノルムの同等性を参照のこと。

定義(一様コーシー列)


定義
集合A上で定義された\bf{R^m}値の関数の列 (f_{n})_{n\in N}
A上で定義された\bf{R^m}値の関数f に一様収束するとは、
\lim_{n \to \infty}\|f-f_n\|_{\infty} = 0

定理
n次元空間の部分集合A上で定義された\bf{R^m}値の連続関数の列が一様コーシー列をなすならば、連続関数に一様収束する。

 項別積分定理  

 項別微分定理  

 級数と収束

無限級数の収束性

 条件収束と絶対収束

 収束条件 

 正項級数の収束条件 

整級数(幕級数) 

 整級数と収束  

 項別微分定理  

 整級数の微分可能性  

高階微分微分可能関数の整級数近似(テイラー展開)

微分可能な関数 f(x) の導関数 f'(x) (あるいは\frac{df(x)}{dx}) が微分可能ならば、
その導関数 (f')'(x) (あるいは\frac{d^{2}f(x)}{dx^2}) が考えられる。
これをfの2階の導関数という。
例えば、変数tの関数 f(t) が時刻tの質点の位置とすると、
その導関数は速度、2階導関数は加速度を表すことを第2章の力学で学んだ。
さらに高階の微分が可能な関数を考え、その性質を考察しよう。

 テイラー展開とテイラーの定理

テイラー展開、テイラー級数についての入門書は

より高度なテイラーの定理などは以下の記事を。但し証明はない。

そこでテイラーの定理について説明する。

 テイラーの定理  RT

個人用ツール