論理的思考法/演習問題
提供: Internet Web School
(版間での差分)
| (間の2版分が非表示) | |||
| 1 行: | 1 行: | ||
'''演繹推論''' | '''演繹推論''' | ||
| - | + | 以下の記述は何を証明しているか解読すること | |
| + | |||
| + | <pre> | ||
| + | environ | ||
| + | |||
| + | vocabularies NUMBERS, REAL_1, FINSEQ_1, VALUED_0, XBOOLE_0, NEWTON, ARYTM_3, | ||
| + | RELAT_1, NAT_1, XXREAL_0, ARYTM_1, SUBSET_1, CARD_1, CARD_3, ORDINAL4, | ||
| + | TARSKI, INT_2, FUNCT_1, FINSEQ_2, PRE_POLY, PBOOLE, FINSET_1, XCMPLX_0, | ||
| + | UPROOTS, FUNCT_2, BINOP_2, SETWISEO, INT_1, FUNCOP_1, NAT_3, XREAL_0; | ||
| + | notations TARSKI, XBOOLE_0, SUBSET_1, FINSET_1, ORDINAL1, CARD_1, NUMBERS, | ||
| + | XCMPLX_0, XXREAL_0, XREAL_0, REAL_1, NAT_D, INT_2, RELAT_1, FUNCT_1, | ||
| + | FUNCT_2, FINSEQ_1, FINSEQ_2, VALUED_0, PBOOLE, RVSUM_1, NEWTON, WSIERP_1, | ||
| + | TREES_4, BINOP_2, FUNCOP_1, XXREAL_2, SETWOP_2, PRE_POLY; | ||
| + | constructors BINOP_1, SETWISEO, NAT_D, FINSEQOP, FINSOP_1, NEWTON, WSIERP_1, | ||
| + | BINOP_2, XXREAL_2, RELSET_1, PRE_POLY, REAL_1,CARD_1; | ||
| + | registrations XBOOLE_0, RELAT_1, FUNCT_1, FINSET_1, NUMBERS, XCMPLX_0, | ||
| + | XXREAL_0, NAT_1, INT_1, BINOP_2, MEMBERED, NEWTON, VALUED_0, FINSEQ_1, | ||
| + | XXREAL_2, CARD_1, FUNCT_2, RELSET_1, ZFMISC_1, FINSEQ_2, PRE_POLY, | ||
| + | XREAL_0, RVSUM_1; | ||
| + | requirements NUMERALS, SUBSET, ARITHM, REAL, BOOLE; | ||
| + | definitions TARSKI, XBOOLE_0, INT_2, NAT_D, FINSEQ_1, VALUED_0, | ||
| + | PRE_POLY,FINSET_1,CARD_1; | ||
| + | theorems ORDINAL1, NEWTON, NAT_1, XCMPLX_1, INT_1, CARD_4, XREAL_0, RVSUM_1, | ||
| + | INT_2, PEPIN, FUNCT_1, CARD_2, PREPOWER, FINSEQ_1, TARSKI, XBOOLE_1, | ||
| + | FUNCOP_1, WSIERP_1, XBOOLE_0, FINSEQ_2, FINSEQ_3, FINSEQ_4, RELAT_1, | ||
| + | FINSOP_1, FUNCT_2, XREAL_1, XXREAL_0, NAT_D, VALUED_0, XXREAL_2, | ||
| + | FINSET_1,PARTFUN1, PRE_POLY, CARD_1; | ||
| + | schemes NAT_1, PRE_CIRC, FINSEQ_1, FINSEQ_2, PBOOLE, CLASSES1; | ||
| + | |||
| + | begin | ||
| + | |||
| + | |||
| + | now | ||
| + | let | ||
| + | Humankind be finite set, | ||
| + | Tokyoite be Subset of Humankind, | ||
| + | Numberofhair be Function of Tokyoite,NAT ; | ||
| + | |||
| + | |||
| + | assume LM1: | ||
| + | card (Tokyoite) = 12*10|^6; | ||
| + | assume LM2: | ||
| + | for x be object | ||
| + | st x in Tokyoite | ||
| + | holds Numberofhair.x <= 10|^6; | ||
| + | |||
| + | |||
| + | LM0: | ||
| + | 10|^6 + 1 < 12*10|^6 | ||
| + | proof | ||
| + | 0 < 10|^6 by PREPOWER:6; | ||
| + | then | ||
| + | P2: 1*10|^6 < 11* 10|^6 by XREAL_1:68; | ||
| + | P3: 1 < 10 & 2 <= 6; | ||
| + | then | ||
| + | 10 < 10 |^6 by PREPOWER:13; | ||
| + | then | ||
| + | 1 < 10 |^6 by XXREAL_0:2,P3; | ||
| + | then | ||
| + | 1 < 11*10|^6 by P2,XXREAL_0:2; | ||
| + | then | ||
| + | P4: 1*10|^6 + 1 < 1*10|^6 + 11*10|^6 by XREAL_1:8; | ||
| + | 1*10|^6 + 11*10|^6 = (1+11)*10|^6 ; | ||
| + | hence thesis by P4; | ||
| + | end; | ||
| + | |||
| + | |||
| + | LM3: | ||
| + | card (rng Numberofhair) <= 10|^6+1 | ||
| + | proof | ||
| + | now let y be object ; | ||
| + | assume | ||
| + | y in rng Numberofhair; | ||
| + | then | ||
| + | consider x be object | ||
| + | such that | ||
| + | A1: x in Tokyoite & y=Numberofhair.x by FUNCT_2:11; | ||
| + | Numberofhair.x <= 10|^6 by A1,LM2; | ||
| + | then | ||
| + | Numberofhair.x < 10|^6+1 by NAT_1:16,XXREAL_0:2; | ||
| + | then | ||
| + | Numberofhair.x in Segm (10|^6+1) by NAT_1:44,A1; | ||
| + | hence | ||
| + | y in Segm (10|^6+1) by A1; | ||
| + | end; | ||
| + | then | ||
| + | A2: rng Numberofhair | ||
| + | c= Segm (10|^6+1) by TARSKI:def 3; | ||
| + | then | ||
| + | card rng Numberofhair <= card Segm (10|^6+1) by NAT_1:43; | ||
| + | then | ||
| + | card rng Numberofhair <= card (10|^6+1) by ORDINAL1:def 17; | ||
| + | hence | ||
| + | card rng Numberofhair <= (10|^6+1) ; | ||
| + | end; | ||
| + | |||
| + | LM4: | ||
| + | card (rng (Numberofhair)) | ||
| + | < card (Tokyoite) | ||
| + | proof | ||
| + | reconsider N1= card (rng (Numberofhair)) | ||
| + | as Element of NAT ; | ||
| + | reconsider N2= card (Tokyoite) | ||
| + | as Element of NAT ; | ||
| + | A1: N1<=(10|^6+1) & N2=12*10|^6 by LM1,LM3; | ||
| + | then | ||
| + | N1 < N2 by A1,XXREAL_0:2,LM0; | ||
| + | hence thesis ; | ||
| + | end; | ||
| + | |||
| + | |||
| + | EX: | ||
| + | ex x,y be object | ||
| + | st x in Tokyoite | ||
| + | & y in Tokyoite | ||
| + | & x <> y | ||
| + | & Numberofhair.x = Numberofhair.y | ||
| + | |||
| + | proof | ||
| + | assume | ||
| + | A1: | ||
| + | not | ||
| + | ( ex x,y be object | ||
| + | st x in Tokyoite | ||
| + | & y in Tokyoite | ||
| + | & x <> y | ||
| + | & Numberofhair.x = Numberofhair.y ) ; | ||
| + | |||
| + | then | ||
| + | A2: for x,y be object | ||
| + | st x in Tokyoite | ||
| + | & y in Tokyoite | ||
| + | & x <> y | ||
| + | holds | ||
| + | Numberofhair.x <> Numberofhair.y ; | ||
| + | |||
| + | A3: dom Numberofhair = Tokyoite by FUNCT_2:def 1; | ||
| + | then | ||
| + | for x,y be object st x in dom Numberofhair | ||
| + | & y in dom Numberofhair | ||
| + | & Numberofhair.x = Numberofhair.y | ||
| + | holds x = y by A2; | ||
| + | then | ||
| + | Numberofhair is one-to-one by FUNCT_1:def 4; | ||
| + | then | ||
| + | card (dom Numberofhair) = card (rng Numberofhair) | ||
| + | by CARD_1:70; | ||
| + | then | ||
| + | card (Tokyoite) = card (rng (Numberofhair)) | ||
| + | by A3; | ||
| + | hence contradiction by LM4; | ||
| + | end; | ||
| + | end; | ||
| + | |||
| + | </pre> | ||
| - | |||
2020年12月3日 (木) 09:21 時点における最新版
演繹推論
以下の記述は何を証明しているか解読すること
environ
vocabularies NUMBERS, REAL_1, FINSEQ_1, VALUED_0, XBOOLE_0, NEWTON, ARYTM_3,
RELAT_1, NAT_1, XXREAL_0, ARYTM_1, SUBSET_1, CARD_1, CARD_3, ORDINAL4,
TARSKI, INT_2, FUNCT_1, FINSEQ_2, PRE_POLY, PBOOLE, FINSET_1, XCMPLX_0,
UPROOTS, FUNCT_2, BINOP_2, SETWISEO, INT_1, FUNCOP_1, NAT_3, XREAL_0;
notations TARSKI, XBOOLE_0, SUBSET_1, FINSET_1, ORDINAL1, CARD_1, NUMBERS,
XCMPLX_0, XXREAL_0, XREAL_0, REAL_1, NAT_D, INT_2, RELAT_1, FUNCT_1,
FUNCT_2, FINSEQ_1, FINSEQ_2, VALUED_0, PBOOLE, RVSUM_1, NEWTON, WSIERP_1,
TREES_4, BINOP_2, FUNCOP_1, XXREAL_2, SETWOP_2, PRE_POLY;
constructors BINOP_1, SETWISEO, NAT_D, FINSEQOP, FINSOP_1, NEWTON, WSIERP_1,
BINOP_2, XXREAL_2, RELSET_1, PRE_POLY, REAL_1,CARD_1;
registrations XBOOLE_0, RELAT_1, FUNCT_1, FINSET_1, NUMBERS, XCMPLX_0,
XXREAL_0, NAT_1, INT_1, BINOP_2, MEMBERED, NEWTON, VALUED_0, FINSEQ_1,
XXREAL_2, CARD_1, FUNCT_2, RELSET_1, ZFMISC_1, FINSEQ_2, PRE_POLY,
XREAL_0, RVSUM_1;
requirements NUMERALS, SUBSET, ARITHM, REAL, BOOLE;
definitions TARSKI, XBOOLE_0, INT_2, NAT_D, FINSEQ_1, VALUED_0,
PRE_POLY,FINSET_1,CARD_1;
theorems ORDINAL1, NEWTON, NAT_1, XCMPLX_1, INT_1, CARD_4, XREAL_0, RVSUM_1,
INT_2, PEPIN, FUNCT_1, CARD_2, PREPOWER, FINSEQ_1, TARSKI, XBOOLE_1,
FUNCOP_1, WSIERP_1, XBOOLE_0, FINSEQ_2, FINSEQ_3, FINSEQ_4, RELAT_1,
FINSOP_1, FUNCT_2, XREAL_1, XXREAL_0, NAT_D, VALUED_0, XXREAL_2,
FINSET_1,PARTFUN1, PRE_POLY, CARD_1;
schemes NAT_1, PRE_CIRC, FINSEQ_1, FINSEQ_2, PBOOLE, CLASSES1;
begin
now
let
Humankind be finite set,
Tokyoite be Subset of Humankind,
Numberofhair be Function of Tokyoite,NAT ;
assume LM1:
card (Tokyoite) = 12*10|^6;
assume LM2:
for x be object
st x in Tokyoite
holds Numberofhair.x <= 10|^6;
LM0:
10|^6 + 1 < 12*10|^6
proof
0 < 10|^6 by PREPOWER:6;
then
P2: 1*10|^6 < 11* 10|^6 by XREAL_1:68;
P3: 1 < 10 & 2 <= 6;
then
10 < 10 |^6 by PREPOWER:13;
then
1 < 10 |^6 by XXREAL_0:2,P3;
then
1 < 11*10|^6 by P2,XXREAL_0:2;
then
P4: 1*10|^6 + 1 < 1*10|^6 + 11*10|^6 by XREAL_1:8;
1*10|^6 + 11*10|^6 = (1+11)*10|^6 ;
hence thesis by P4;
end;
LM3:
card (rng Numberofhair) <= 10|^6+1
proof
now let y be object ;
assume
y in rng Numberofhair;
then
consider x be object
such that
A1: x in Tokyoite & y=Numberofhair.x by FUNCT_2:11;
Numberofhair.x <= 10|^6 by A1,LM2;
then
Numberofhair.x < 10|^6+1 by NAT_1:16,XXREAL_0:2;
then
Numberofhair.x in Segm (10|^6+1) by NAT_1:44,A1;
hence
y in Segm (10|^6+1) by A1;
end;
then
A2: rng Numberofhair
c= Segm (10|^6+1) by TARSKI:def 3;
then
card rng Numberofhair <= card Segm (10|^6+1) by NAT_1:43;
then
card rng Numberofhair <= card (10|^6+1) by ORDINAL1:def 17;
hence
card rng Numberofhair <= (10|^6+1) ;
end;
LM4:
card (rng (Numberofhair))
< card (Tokyoite)
proof
reconsider N1= card (rng (Numberofhair))
as Element of NAT ;
reconsider N2= card (Tokyoite)
as Element of NAT ;
A1: N1<=(10|^6+1) & N2=12*10|^6 by LM1,LM3;
then
N1 < N2 by A1,XXREAL_0:2,LM0;
hence thesis ;
end;
EX:
ex x,y be object
st x in Tokyoite
& y in Tokyoite
& x <> y
& Numberofhair.x = Numberofhair.y
proof
assume
A1:
not
( ex x,y be object
st x in Tokyoite
& y in Tokyoite
& x <> y
& Numberofhair.x = Numberofhair.y ) ;
then
A2: for x,y be object
st x in Tokyoite
& y in Tokyoite
& x <> y
holds
Numberofhair.x <> Numberofhair.y ;
A3: dom Numberofhair = Tokyoite by FUNCT_2:def 1;
then
for x,y be object st x in dom Numberofhair
& y in dom Numberofhair
& Numberofhair.x = Numberofhair.y
holds x = y by A2;
then
Numberofhair is one-to-one by FUNCT_1:def 4;
then
card (dom Numberofhair) = card (rng Numberofhair)
by CARD_1:70;
then
card (Tokyoite) = card (rng (Numberofhair))
by A3;
hence contradiction by LM4;
end;
end;
帰納的推論
以下の帰納的推論の誤りの原因と帰納的推論限界はどこにあるのか述べること.
ある過多な飲酒僻がある人が,友人に自分が泥酔する原因はアルコールにあるのではないと主張し,自身の体を使って以下の実験を行った.
- 日曜 ウイスキーの水割りを多量に飲用した
- 月曜 ウォッカのオンザロックを多量に飲用した
- 火曜 ブランデーと炭酸水を多量に飲用した
- 水曜 ワインとミネラルウォーターを多量に飲用した
- 木曜 ジントニックと炭酸水を多量に飲用した
- 金曜 テキーラとミネラルウォーターを多量に飲用した
- 土曜 リキュールとミネラルウォーターを多量に飲用した
当然ながら,この人物は1週間毎日泥酔した.そして,日曜日に自分が飲用したものには全て水が共通している. よって自分が泥酔する原因は水であると主張した.

