Loading [MathJax]/jax/output/HTML-CSS/jax.js

線形計画法(生産計画)

提供: Internet Web School

(版間での差分)
36 行: 36 行:
<math>(1)</math>式のように変数に関する制約条件式が1次式で与えられ,
<math>(1)</math>式のように変数に関する制約条件式が1次式で与えられ,
-
<math>(3)</math>式のように評価関数も1次式で与えられる問題は線形計画と呼ばれる.
+
<math>(3)</math>式のように評価関数も1次式で与えられる問題は[https://ja.wikipedia.org/wiki/%E7%B7%9A%E5%9E%8B%E8%A8%88%E7%94%BB%E6%B3%95 線形計画]と呼ばれる.
この問題の解法にはシンプレックス法と[https://ja.wikipedia.org/wiki/%E5%86%85%E7%82%B9%E6%B3%95 内点法]がある.
この問題の解法にはシンプレックス法と[https://ja.wikipedia.org/wiki/%E5%86%85%E7%82%B9%E6%B3%95 内点法]がある.
シンプレクス法は[https://www.sist.ac.jp/~suganuma/kougi/other_lecture/SE/opt/linear/linear.htm#1.2 [菅沼]]の解説が判りやすい.
シンプレクス法は[https://www.sist.ac.jp/~suganuma/kougi/other_lecture/SE/opt/linear/linear.htm#1.2 [菅沼]]の解説が判りやすい.

2020年11月22日 (日) 15:54時点における版

生産計画

ある企業では製品A,B,Cを原料Ⅰ,Ⅱ,Ⅲ,Ⅳ用いて生産している. 製品A,B,C の1単位当たり利益をそれぞれ80,110,95とする.  また, 製品A,B,Cを1単位生産するのに必要な原料Ⅰ,Ⅱ,Ⅲ,Ⅳのそれぞれ量と使用可能な上限が次の表で与えられる. これらの条件のもとに,利益を最大にするには製品A,B,Cをそれぞれ,どれだけ生産すれば良いか?.


この問題は以下のように数学的に定式化される.

線形計画法

製品A,B,Cをそれぞれx1,x2,x3 単位生産するときx1,x2,x3は以下の不等式を満たす.

4x1+0x2+7x3901x1+3x2+9x3606x1+0x2+14x31104x1+10x2+1x375 (1)

さらに各製品生産量は負ではないから

0x1,0x2,0x3(2)

この制約条件のもとに

L(x1,x2,x3)=80x1+110x2+95x3(3)

を最大にするx1,x2,x3を求めよ.


(1)式のように変数に関する制約条件式が1次式で与えられ, (3)式のように評価関数も1次式で与えられる問題は線形計画と呼ばれる. この問題の解法にはシンプレックス法と内点法がある. シンプレクス法は[菅沼]の解説が判りやすい.


この問題を解くのにはMicrosoft Excelのソルバーや フリーソフトのOpen Office で提供されるソルバーと同等の機能をもつソフトを用いることができる.

この問題のMicrosoft Excelのソルバーによる解法例を示す。 ファイル:生産計画.pdf

ファイル:LP-Fig.1.jpg

個人用ツール