物理/電気と磁気(1) 静電気と電界、電流と磁界
提供: Internet Web School
2 行: | 2 行: | ||
> [[物理/電気と磁気(1) 静電気と電界、電流と磁界|9章 電気と磁気(1) 静電気と電界、電流と磁界]] | > [[物理/電気と磁気(1) 静電気と電界、電流と磁界|9章 電気と磁気(1) 静電気と電界、電流と磁界]] | ||
- | + | テレビ、電話、携帯電話、冷蔵庫、パソコン、コピー機。</br>現代社会は電気や磁気を利用した製品に満ちている。</br>この章と次の章では、電気・磁気は何か、どのような性質を持つかについて学ぶ。 | |
*参考文献;[[wikibooks_ja:高等学校理科 物理II 電気と磁気|ウィキブックス(高等学校理科 物理II 電気と磁気)]] | *参考文献;[[wikibooks_ja:高等学校理科 物理II 電気と磁気|ウィキブックス(高等学校理科 物理II 電気と磁気)]] | ||
== 電磁気現象の根源 == | == 電磁気現象の根源 == | ||
- | + | 物質をつくっている原子は、原子核と電子から出来ている。</br>詳しいことは11章で学ぶが、原子核はいくつかの陽子と中性子からできている。</br>電子の個数は陽子と同数である。</br> | |
- | + | 陽子は正の電荷+eをもち、電子はこれと同じ大きさで符号が反対の負の電荷-eを持つ。</br>同符号の電荷は互いに反発し、異符号の電荷は互いに引き合う。 | |
- | + | 陽子と電子の存在により、原子や分子、固体・液体など物体は生成され、</br>電荷、電流、磁石、電磁場、電磁波などの現象が生じる。</br>この章と次章でこれらについて学ぶ。 | |
==静電気== | ==静電気== | ||
15 行: | 15 行: | ||
===電荷=== | ===電荷=== | ||
- | + | 原子は正負等しい電荷をもつので、離れた所から観測すれば、正と負の電荷が打ち消しあっている(電荷をもたない)。</br>したがって、物質は通常は電荷を持たない。物質が電子をいくつか失ったり、獲得すると、物質は電荷を帯びる。帯電するという。</br>したがって全ての電荷はe の整数倍である。eを電気素量という。 | |
====電荷の単位==== | ====電荷の単位==== | ||
24 行: | 24 行: | ||
====摩擦電気==== | ====摩擦電気==== | ||
- | + | 2つの物質をこすりあわせると、このエネルギーで、電子が一方の物質から他方の物質に移動して、</br>前者は正の電荷を帯び、(電荷保存法則より)後者はそれと同じ大きさの負の電荷を帯びる。</br>この帯電した電気を摩擦電気という。 | |
*[[wikipedia_ja:摩擦電気|ウィキペディア(摩擦電気)]] | *[[wikipedia_ja:摩擦電気|ウィキペディア(摩擦電気)]] | ||
====クーロンの法則==== | ====クーロンの法則==== | ||
- | + | 静止した同符号の2つの電荷は互いに反発し、異符号の電荷は互いに引き合う。</br>この力の向きは2つの電荷を結ぶ直線の方向と一致し、その大きさは、真空中では、2つの電荷の積に比例し、その距離の2乗に反比例する。具体的には、 | |
*[[wikipedia_ja:クーロンの法則|ウィキペディア(クーロンの法則)]] | *[[wikipedia_ja:クーロンの法則|ウィキペディア(クーロンの法則)]] | ||
を参照のこと。向きも考慮したベクトル表示にも慣れたおくと良い。電荷<tex>q_1</tex>の位置ベクトルを<tex>r_1</tex>、電荷<tex>q_2</tex>の位置ベクトルを<tex>r_2</tex>、電荷<tex>q_1</tex>が電荷<tex>q_2</tex>から受けるクーロン力を<tex>\mathit{F_1}</tex>とすると | を参照のこと。向きも考慮したベクトル表示にも慣れたおくと良い。電荷<tex>q_1</tex>の位置ベクトルを<tex>r_1</tex>、電荷<tex>q_2</tex>の位置ベクトルを<tex>r_2</tex>、電荷<tex>q_1</tex>が電荷<tex>q_2</tex>から受けるクーロン力を<tex>\mathit{F_1}</tex>とすると | ||
37 行: | 37 行: | ||
- | ==== | + | ====電気力は重力よりはるかに大きいこと==== |
- | + | 質量1gの2つの質点にそれぞれ1クーロンの電気を帯電させ、1cm離しておいたときに、作用する静電気力と重力を計算して比較すること。 | |
===電界(あるいは電場)=== | ===電界(あるいは電場)=== | ||
電荷間に作用する力を近接作用の考え方で考察して電界(電場ともいう)という重要な概念を得る。クーロンの法則を電界の概念でいいかえると、電界にかんするガウスの法則が得られる。電界から電位や電圧という重要な概念も得られる。 | 電荷間に作用する力を近接作用の考え方で考察して電界(電場ともいう)という重要な概念を得る。クーロンの法則を電界の概念でいいかえると、電界にかんするガウスの法則が得られる。電界から電位や電圧という重要な概念も得られる。 | ||
46 行: | 46 行: | ||
電荷に静電気力(クーロン力)を及ぼす空間を電界と呼ぶ。空間の任意の点の電界の強さと向きは、その点に単位電荷を置いたときに作用する静電気力で定義する。詳しくは | 電荷に静電気力(クーロン力)を及ぼす空間を電界と呼ぶ。空間の任意の点の電界の強さと向きは、その点に単位電荷を置いたときに作用する静電気力で定義する。詳しくは | ||
*[[wikipedia_ja:電場|ウィキペディア(電場)]] | *[[wikipedia_ja:電場|ウィキペディア(電場)]] | ||
+ | =====電界によるクーロンの法則の表現===== | ||
+ | 電荷<tex> \mathit{q} </tex>が、電荷<tex> \mathit{q'} </tex>から受ける力は、</br.<tex> \mathit{q'} </tex> が<tex> \mathit{q} </tex>点に作る電界<tex> \mathit{E} </tex> を用いて、 | ||
+ | <tex> \mathit{F}=\mathit{q}\mathit{E} </tex> | ||
====点電荷のつくる電界==== | ====点電荷のつくる電界==== | ||
大きさの無視できる電荷を点電荷という。点電荷のつくる電界については | 大きさの無視できる電荷を点電荷という。点電荷のつくる電界については | ||
53 行: | 56 行: | ||
クーロン力の重ね合わせの原理と電界の定義から、それぞれの電荷がつくる電界のベクトル和を取れば良いことが分かる。 | クーロン力の重ね合わせの原理と電界の定義から、それぞれの電荷がつくる電界のベクトル和を取れば良いことが分かる。 | ||
====電界の単位==== | ====電界の単位==== | ||
- | <tex> \mathit{F}=\mathit{q}\mathit{E} </tex>, 電荷<tex>\mathit{q} | + | <tex> \mathit{F}=\mathit{q}\mathit{E} </tex>, 電荷<tex>\mathit{q}</tex>の単位はC(クーロン)、力<tex> \mathit{F} </tex>の単位はN(ニュートン)なので、電界<tex> \mathit{E} </tex>の単位は<tex> \mathit{N/C} </tex> である。 |
- | ==== | + | ====電気力線とガウスの法則==== |
- | ==== | + | =====電気力線とは ===== |
- | ==== | + | 電場を目で見て理解できるように工夫したのが電気力線。</br>電界内で正の電荷が電界から力を受けて非常にゆっくりと動く時の軌跡(曲線)を考え、電気力線と呼ぶ。</br>正確には、曲線の各点の接線の向きが電界の向きに一致するとき、電気力線という。 |
+ | =====電気力線の本数と密度===== | ||
+ | ある点で電界の強さが<tex> \mathit{E} </tex> であるとき、</br>その点を中心に電界と直交する微小な平面部分をとり、</br>1m^3 </tex> あたり<tex> \mathit{E} </tex>本の密度で電気力線が通るように描いて、電界の強さを表示する。 | ||
+ | =====ガウスの法則===== | ||
+ | |||
+ | ====平行板コンダンサーの電界==== | ||
+ | |||
===電位と電圧=== | ===電位と電圧=== | ||
*[[wikipedia_ja:電位|ウィキペディア(電位)]] | *[[wikipedia_ja:電位|ウィキペディア(電位)]] | ||
66 行: | 75 行: | ||
====電界中の導体と静電誘導==== | ====電界中の導体と静電誘導==== | ||
====静電遮蔽==== | ====静電遮蔽==== | ||
- | ==== | + | ====電界中の不導体と誘電分極==== |
===コンデンサー=== | ===コンデンサー=== | ||
+ | |||
====コンデンサーに蓄えられる電気量と電圧==== | ====コンデンサーに蓄えられる電気量と電圧==== | ||
====コンデンサーの誘電率==== | ====コンデンサーの誘電率==== |
2011年5月7日 (土) 03:39時点における版
物理 > 9章 電気と磁気(1) 静電気と電界、電流と磁界
テレビ、電話、携帯電話、冷蔵庫、パソコン、コピー機。</br>現代社会は電気や磁気を利用した製品に満ちている。</br>この章と次の章では、電気・磁気は何か、どのような性質を持つかについて学ぶ。
目次 |
電磁気現象の根源
物質をつくっている原子は、原子核と電子から出来ている。</br>詳しいことは11章で学ぶが、原子核はいくつかの陽子と中性子からできている。</br>電子の個数は陽子と同数である。</br> 陽子は正の電荷+eをもち、電子はこれと同じ大きさで符号が反対の負の電荷-eを持つ。</br>同符号の電荷は互いに反発し、異符号の電荷は互いに引き合う。
陽子と電子の存在により、原子や分子、固体・液体など物体は生成され、</br>電荷、電流、磁石、電磁場、電磁波などの現象が生じる。</br>この章と次章でこれらについて学ぶ。
静電気
この節では、まず、静止した電荷(静電気という)の性質を学ぶ。
電荷
原子は正負等しい電荷をもつので、離れた所から観測すれば、正と負の電荷が打ち消しあっている(電荷をもたない)。</br>したがって、物質は通常は電荷を持たない。物質が電子をいくつか失ったり、獲得すると、物質は電荷を帯びる。帯電するという。</br>したがって全ての電荷はe の整数倍である。eを電気素量という。
電荷の単位
電荷保存の法則
電荷は消滅も生成もしないことが、経験によって確かめられている。これを電荷保存法則という。
摩擦電気
2つの物質をこすりあわせると、このエネルギーで、電子が一方の物質から他方の物質に移動して、</br>前者は正の電荷を帯び、(電荷保存法則より)後者はそれと同じ大きさの負の電荷を帯びる。</br>この帯電した電気を摩擦電気という。
クーロンの法則
静止した同符号の2つの電荷は互いに反発し、異符号の電荷は互いに引き合う。</br>この力の向きは2つの電荷を結ぶ直線の方向と一致し、その大きさは、真空中では、2つの電荷の積に比例し、その距離の2乗に反比例する。具体的には、
を参照のこと。向きも考慮したベクトル表示にも慣れたおくと良い。電荷の位置ベクトルを、電荷の位置ベクトルを、電荷が電荷から受けるクーロン力をとすると にも慣れたおくと良い。
3つ以上の電荷に働く力
N 個(>2)の電荷 があるとき、 に作用する電気力は、 のそれぞれからが受けるクーロン力(ベクトル表示)の和になることが実験で確かめられている。 これを、クーロン力の重ね合わせ原理という。
電気力は重力よりはるかに大きいこと
質量1gの2つの質点にそれぞれ1クーロンの電気を帯電させ、1cm離しておいたときに、作用する静電気力と重力を計算して比較すること。
電界(あるいは電場)
電荷間に作用する力を近接作用の考え方で考察して電界(電場ともいう)という重要な概念を得る。クーロンの法則を電界の概念でいいかえると、電界にかんするガウスの法則が得られる。電界から電位や電圧という重要な概念も得られる。
遠隔作用と近接作用
電荷の間のクーロン力はどのようにして働くのだろうか。遠隔作用と近接作用の二通りの考え方がある。遠隔作用では、電荷が互いに直接力を及ぼしていると考える。近接作用では、電荷が空間を歪ませ電界を作り、この歪んだ空間(電界)がもう一つの電荷に力を及ぼすと考える。現在は近接作用が自然の法則であると考えられている。
電界の定義
電荷に静電気力(クーロン力)を及ぼす空間を電界と呼ぶ。空間の任意の点の電界の強さと向きは、その点に単位電荷を置いたときに作用する静電気力で定義する。詳しくは
電界によるクーロンの法則の表現
電荷が、電荷から受ける力は、</br. が点に作る電界 を用いて、
点電荷のつくる電界
大きさの無視できる電荷を点電荷という。点電荷のつくる電界については
- ウィキペディア(電場) の2.1 クーロンの法則
を参照のこと。
2つ以上の点電荷の作る電界
クーロン力の重ね合わせの原理と電界の定義から、それぞれの電荷がつくる電界のベクトル和を取れば良いことが分かる。
電界の単位
, 電荷の単位はC(クーロン)、力の単位はN(ニュートン)なので、電界の単位は である。
電気力線とガウスの法則
電気力線とは
電場を目で見て理解できるように工夫したのが電気力線。</br>電界内で正の電荷が電界から力を受けて非常にゆっくりと動く時の軌跡(曲線)を考え、電気力線と呼ぶ。</br>正確には、曲線の各点の接線の向きが電界の向きに一致するとき、電気力線という。
電気力線の本数と密度
ある点で電界の強さが であるとき、</br>その点を中心に電界と直交する微小な平面部分をとり、</br>1m^3 </tex> あたり本の密度で電気力線が通るように描いて、電界の強さを表示する。