MimeTeX
提供: Internet Web School
(版間での差分)
4 行: | 4 行: | ||
This is a sample equation : <tex>\sqrt{x^2+y^2} = z</tex> | This is a sample equation : <tex>\sqrt{x^2+y^2} = z</tex> | ||
+ | <nowiki><tex>\sqrt{x^2+y^2} = z</tex></nowiki> | ||
==quoted/blocked equation== | ==quoted/blocked equation== | ||
: <tex>\sqrt{x^2+y^2} = z</tex> | : <tex>\sqrt{x^2+y^2} = z</tex> | ||
+ | <nowiki><tex>\sqrt{x^2+y^2} = z</tex></nowiki> | ||
: <tex>\Large m\mathbf{a} = m\frac{d^2\mathbf{r}}{dt^2} = \mathbf{F}</tex> | : <tex>\Large m\mathbf{a} = m\frac{d^2\mathbf{r}}{dt^2} = \mathbf{F}</tex> | ||
+ | <nowiki><tex>\Large m\mathbf{a} = m\frac{d^2\mathbf{r}}{dt^2} = \mathbf{F}</tex></nowiki> | ||
==multiple-line blocked equations== | ==multiple-line blocked equations== | ||
: <tex>e^{i \theta} = \cos \theta + i \, \sin \theta\\ e^{\pi i} + 1 = 0</tex> | : <tex>e^{i \theta} = \cos \theta + i \, \sin \theta\\ e^{\pi i} + 1 = 0</tex> | ||
+ | <nowiki><tex>e^{i \theta} = \cos \theta + i \, \sin \theta\\ e^{\pi i} + 1 = 0</tex></nowiki> | ||
==\SIZE and \COLOR features== | ==\SIZE and \COLOR features== | ||
19 行: | 23 行: | ||
===small=== | ===small=== | ||
: <tex>\small e^x=\sum_{n=0}^\infty\frac{x^n}{n!}</tex> | : <tex>\small e^x=\sum_{n=0}^\infty\frac{x^n}{n!}</tex> | ||
+ | <nowiki><tex>\small e^x=\sum_{n=0}^\infty\frac{x^n}{n!}</tex></nowiki> | ||
===normalsize=== | ===normalsize=== |
2010年9月14日 (火) 02:27時点における版
目次 |
mimeTeXプラグインによる数式表示
inline equation
This is a sample equation :
<tex>\sqrt{x^2+y^2} = z</tex>
quoted/blocked equation
<tex>\sqrt{x^2+y^2} = z</tex>
<tex>\Large m\mathbf{a} = m\frac{d^2\mathbf{r}}{dt^2} = \mathbf{F}</tex>
multiple-line blocked equations
<tex>e^{i \theta} = \cos \theta + i \, \sin \theta\\ e^{\pi i} + 1 = 0</tex>
\SIZE and \COLOR features
small
<tex>\small e^x=\sum_{n=0}^\infty\frac{x^n}{n!}</tex>
normalsize
large
Large
LARGE
Huge + blue
examples
http://www.forkosh.dreamhost.com/source_mimetex.html#examples
MediaWiki extensions/mimetex.php plugin
http://d.hatena.ne.jp/cou929_la/20071122/1195745561
LaTeX Math. symbols
Please refer an attached file on this page ;)