物理/多変数解析学
提供: Internet Web School
(→偏微分) |
(→偏微分) |
||
24 行: | 24 行: | ||
$\triangleq f(\bf x) \quad ここで\ \Bigl(\ x_j (j\neq i);定数\ \Bigr)$<br/> | $\triangleq f(\bf x) \quad ここで\ \Bigl(\ x_j (j\neq i);定数\ \Bigr)$<br/> | ||
を考える。<br/> | を考える。<br/> | ||
- | + | この関数は、一変数なので、点$x_i=a$ での微分係数 <br/> | |
- | $\frac{d\phi^i | + | $\frac{d\phi^i}{dx_i}(a)\triangleq \lim_{ h \to 0, h\neq 0}\frac{\phi^i(a+h)-\phi^i(a)}{\bf h}$<br/> |
- | $=\lim_{ h \to 0, h\neq 0}\frac{ f(x_1,,,x_{i-1}, | + | $=\lim_{ h \to 0, h\neq 0}\frac{ f(x_1,,,x_{i-1},a+h,x_{i+1},,,x_n)-f(x_1,,,x_{i-1},a,x_{i+1},,,x_n)}{\bf h}$<br/> |
を考えることができる。<br/><br/> | を考えることができる。<br/><br/> | ||
定義(偏微分)<br/> | 定義(偏微分)<br/> | ||
34 行: | 34 行: | ||
$\frac{\partial f}{\partial x_i}(a) \triangleq \frac{d\phi^i(x_i)}{dx_i}(a)$<br/> | $\frac{\partial f}{\partial x_i}(a) \triangleq \frac{d\phi^i(x_i)}{dx_i}(a)$<br/> | ||
を、$f(\bf x)$ の 変数 $x_i$ に関する点$a$ での'''偏微分係数'''という。<br/><br/> | を、$f(\bf x)$ の 変数 $x_i$ に関する点$a$ での'''偏微分係数'''という。<br/><br/> | ||
- | 定義(偏導関数)<br/> | + | '''定義(偏導関数)'''<br/> |
$f(\bf x)$ が $x_i$ に関してどの点でも偏微分可能であるならば、<br/> | $f(\bf x)$ が $x_i$ に関してどの点でも偏微分可能であるならば、<br/> | ||
- | 任意の点$x_i$ | + | 任意の点$x_i$ にその点の偏微分係数$\frac{d\phi^i}{dx_i}(x_i)$を対応させると、新しい関数が得られる。<br/> |
これを、$f(\bf x)$ の $x_i$ に関する偏導関数といい、記号<br/> | これを、$f(\bf x)$ の $x_i$ に関する偏導関数といい、記号<br/> | ||
$f_{x_[i]}(\bf x),\quad D_{x_i}f(\bf x),\quad \frac{\partial f}{\partial x_i} (\bf x),\quad \partial f/\partial x_i$<br/> | $f_{x_[i]}(\bf x),\quad D_{x_i}f(\bf x),\quad \frac{\partial f}{\partial x_i} (\bf x),\quad \partial f/\partial x_i$<br/> |
2017年10月10日 (火) 10:55時点における版
目次 |
「9.1 多変数解析学」
学習案内
本章の冒頭の偏微分の導入部については下記の本も参考にしてください。
それ以降の内容については、ウィキブックスには殆どないため、 このテクストで今後叙述する予定です。
多変数の実数値関数の微分
${\bf R^n}=\{(x_1,x_2,,,x_n) \mid x_i\in{\bf R},i=1,2,\cdots n\}$ の開区間
$I^n=\prod_{i=1}^{n}(a_i,b_i)$上で定義された実関数$y=f(x_1,x_2,,,x_n)$を考える。
一変数関数の議論から類推するために
以後、${\bf x}:=(x_1,x_2,,,x_n)$とおき、$y=f({\bf x})$と書くこともある。
$I^n \,$上で定義された実数値関数$\ y=f({\bf x})=f(x_1,x_2,,,x_n)\,$の微分について説明する。
一変数の微分から類推すると
微小なベクトル $h=(h_1,h_2,,,h_n)$ を考え、極限
$\lim_{{\bf h} \to 0,{\bf h}\neq 0}\frac{f({\bf s}+{\bf h})-f({\bf s})}{{\bf h} }$
が存在するとき、関数fは微分可能と定義することが考えられる。
しかし残念ながら、
${\bf h}$はn次元ベクトルなので、割り算は不可能でありこの定義は無効である。
偏微分
そこで、$f$ の変数 $\bf x$ の第i成分 $x_i$ だけを変数とし、
他の変数は定数とみなしてして得られる一変数関数
$\phi^{i}(x_i)$
$\triangleq f(\bf x) \quad ここで\ \Bigl(\ x_j (j\neq i);定数\ \Bigr)$
を考える。
この関数は、一変数なので、点$x_i=a$ での微分係数
$\frac{d\phi^i}{dx_i}(a)\triangleq \lim_{ h \to 0, h\neq 0}\frac{\phi^i(a+h)-\phi^i(a)}{\bf h}$
$=\lim_{ h \to 0, h\neq 0}\frac{ f(x_1,,,x_{i-1},a+h,x_{i+1},,,x_n)-f(x_1,,,x_{i-1},a,x_{i+1},,,x_n)}{\bf h}$
を考えることができる。
定義(偏微分)
変数 $\bf x$ の第i成分 $x_i$ 以外の$x_j\ (j\neq i)$ は固定する。
もし、一変数関数 $\phi^i(x_i)=f(\bf x)$ が、点$x_i=a$で微分可能ならば、
関数fは、$x_i$ に関して、点$x_i=a$で 偏微分可能であると言い,
$\frac{\partial f}{\partial x_i}(a) \triangleq \frac{d\phi^i(x_i)}{dx_i}(a)$
を、$f(\bf x)$ の 変数 $x_i$ に関する点$a$ での偏微分係数という。
定義(偏導関数)
$f(\bf x)$ が $x_i$ に関してどの点でも偏微分可能であるならば、
任意の点$x_i$ にその点の偏微分係数$\frac{d\phi^i}{dx_i}(x_i)$を対応させると、新しい関数が得られる。
これを、$f(\bf x)$ の $x_i$ に関する偏導関数といい、記号
$f_{x_[i]}(\bf x),\quad D_{x_i}f(\bf x),\quad \frac{\partial f}{\partial x_i} (\bf x),\quad \partial f/\partial x_i$
などで表示する。
定理(合成関数の微分)
$R^2$ から $R$ への関数$f(x,y)$ と
$R$ から $R$ への関数$g(x,y)$ の合成関数
$h(x,y)=g(f(x,y)$
を考える。
もし、$f(x,y)$ が $(x_0,y_0)$ で、xに関して偏微分可能で,
$\quad g(x,y)$ が、$z_0=f(x_0,y_0)$ において微分可能ならば、
$h(x,y)=g(f(x,y)$ は $(x_0,y_0)$ で、xに関して偏微分可能であり,
方向微分
微分(全微分)
定義1;微分可能(全微分可能ともいう)、導値(微分係数)、導関数
定理1;
微分可能ならば、偏微分可能
定理2
$C^{1}$級の関数は微分可能