Processing math: 100%

最適化理論/ゲーム理論

提供: Internet Web School

UNIQ630cbbef15dc117c-MathJax-2-QINU2 による版

A,Bがじゃんけんを繰り返し,毎回,勝ったほうが10点を得るゲームを行う. A,Bが繰り出す手によって得られる得点をAの視点から表にしたものが以下である。

Aはどのように「グー」「チョキ」「パー」の手を繰り出していけば、得点が最大になるだろうか? 例えばAが「グー」を出し続けていけば,Bはそれを観て「パー」を出し続けて,Bは勝ちを繰り返すことができる. Aが「グー」「チョキ」「パー」をこの順に規則的に繰り返していけば,Bはそれを観て 「パー」「グー」「チョキ」 という対抗手段を講じて勝ちを繰り返すことができる.

結局,Aは「グー」「チョキ」「パー」を不規則に出すことになる.それでは,どのようなそれぞれ確率で出せば 得点の期待値を最大にできるか? という問題に帰着するだろう.


Aが「グー」「チョキ」「パー」を出す確率をそれぞれ p1,p2,p3とする.

0p1,0p2,0\qqudp3p1+p2+p3=0\qqud(1)

ここで問題の簡単化のため,得点表のそれぞれ要素の値を正数とするため各要素に10を加えておく. Aが得られる得点の期待値を求めれば


である. この問題に解が存在するとすれば,その得点の期待値0<G とすれば







ゲーム理論

個人用ツール