物理/物質と原子・分子

提供: Internet Web School

UNIQ4d6be0224c3cf272-MathJax-2-QINU2 による版

物理7章 物質と原子・分子

この章では、6章で学んだ、温度や圧力、ボイルシャルルの定理などが、原子や分子の運動(熱運動という)で説明出来ることを学び、熱現象の本質は原子や分子の熱運動であることを理解する。さらには物質の性質が原子や分子の構造から決まることを学ぶ。

目次

物質の構造

元素

化学的反応によってそれ以上簡単な成分に分解できない物質

原子と原子の構造

分子と分子間力

多くの原子はそのままでは存在が不安定で、原子間に働く静電相互作用(クーロン力)により、複数の原子が結合して分子として存在する。 原子間に働く静電相互作用(クーロン力)により、原子は分子として集合している。

分子間にも、電磁力が働き、物質を構成している。

気体分子の運動と気体の圧力、温度

気体の圧力、温度という現象を微視的な気体の分子の運動から、考察しよう。


気体分子の運動と気体の圧力、ボイルの法則、温度

温度とは、多数の分子の熱運動の激しさの平均値であり、圧力とはこの激しく動く多数の分子が壁や物体にぶつかって跳ね返る時、壁や物体の単位面積当たりに平均して与える力であると考えられる。この見方により、ニュートンの運動法則を利用して、解析をすすめると気体の圧力の正体が分かり、ボイルの法則が得られる。さらに、理想気体の状態方程式と組み合わせて、気体の温度が、熱平衡状態での1分子の運動エネルギーの平均値を用いて表現出来る。

高温の物体の分子は低温の物体の分子より(平均すると)激しく動いている。この両者を(気体の場合は薄い壁を介して)接触させると、この分子同士がぶつかりあい(あるいは壁を介して、力を及ぼしあい)激しく動いている高温物体の多くの分子はエネルギーを失って動きが遅くなり(温度が下がり)、低温物体の分子はエネルギーをもらい動きがはげしくなる(温度が上がる)。すなわち高温物体から低温物体にエネルギーが伝えられる。このエネルギーの流れが熱の本性である。

気体の内部エネルギーと仕事:熱力学の第1法則

気体の内部エネルギー

気体の内部エネルギーとは、考察対象の気体分子全体のエネルギーから、その重心の運動エネルギーと重力によるポテンシャルエネルギーを差し引いたものを、言う。言いかえると気体重心からみた各分子の運動エネルギーと各粒子間の分子間力に関するポテンシャルエネルギーの和のことである。

熱力学の第1法則

熱は多数の分子の熱運動エネルギーなので、熱も含めたエネルギー保存則である熱力学の第一法則は、多数の分子からなる系の力学的エネルギーの保存則と見ることができる。

熱機関と不可逆性:熱力学の第2法則

原子・分子の構造と物質の性質

物質のさまざまな巨視的性質はその原子や分子の構造や運動から決まる。

詳しいことは大学で学ぶ。

物質の3態

物質は気体、液体、固体という3つの状態をとる。H2Oの場合、水蒸気、水、氷です。何故、こうしたことが起こるのでしょうか?
原子・分子の熱運動が小さい低温の場合には、原子・分子間力が勝って物体は小さく固く結合して個体になり、分子の熱運動が大きい高温では分子間力を完全に打ち破り個々の分子が勝手に熱運動で動き回るため気体になるのです。この中間では、原子・分子間の距離はあまりひろがらないが、その相対位置関係は熱運動で自由に変わるため、液体になる。詳しくは

CAIテスト

個人用ツール