Processing math: 0%

物理/8章の付録

提供: Internet Web School

UNIQ340fc22c54834e07-MathJax-2-QINU2 による版

目次

[非表示]

 8章の付録

 問の解答

 問

lim が存在し、2より大きく3以下であることを証明する。
(1)準備; 2項定理;を用いた展開
a_n\triangleq (1+\frac{1}{n})^{n} \qquad (n は自然数) とおく。
すると、 2 \leq a_1=1+\frac{1}{1}=2\quad \lt a_2=(1+\frac{1}{2})^{2} =2\frac{1}{4}である。
以下に、数列 \{a_n\}_{n=1}^{\infty} が単調増大で、有界(2より大、3より小)である事を示す。
するとテキストの定理により、この数列は2より大きく、3以下のある実数に収束することが分かる。
nが3以上の自然数の時は、a_nを2項定理を用いて展開すると
  a_n=(1+\frac{1}{n})^{n}=\sum_{m=0}^{n}{}_n\mathrm{C}_{m}1^{n-m}(\frac{1}{n})^m \qquad \qquad (1)
  ここで {}_n\mathrm{C}_{m} は、n個のものからm個取り出す取り出し方の総数で、
mが1以上でn 以下の自然数の時は
{}_n\mathrm{C}_{m}=\frac{n!}{m!(n-m)!} \qquad \qquad (2)
ここで、m が1以上の自然数の時は  m!\triangleq 1\cdot 2\cdot 3 \cdots (m-1)\cdot m
mが零の時は \quad 0!\triangleq 1  と定義。

すると、
{}_n\mathrm{C}_{0}=\frac{n!}{0!n!}=1\qquad \qquad (3) 
m \geq 1のとき、{}_n\mathrm{C}_{m} =\frac{n!}{m!(n-m)!}=\frac{n\cdot (n-1)\cdot (n-2) \cdots \Bigl(n-(m-1)\Bigr) }{m!} \qquad (4)
式(1)に式(2)を代入し,式(3)、(4)を利用して計算すると
a_n = 1+\sum_{m=1}^{n}\frac{n(n-1)(n-2)\cdots \Bigl(n-(m-1)\Bigr)}{m!}1^{n-m}(\frac{1}{n})^m
=2+\sum_{m=2}^{n}\frac{1(1-\frac{1}{n})(1-\frac{2}{n})\cdots (1-\frac{m-1}{n})}{m!}\qquad \qquad (5)
ここで、n より小さい全ての自然数 i に対して
0 \lt 1-\frac{i}{n} \lt 1 なので、
2 \lt a_n \lt 2+\sum_{m=2}^{n}\frac{1}{m!} \qquad \qquad \qquad (6)

(2)すべての2以上の自然数 n に関して、
2 \lt a_n \lt 3 \qquad \qquad \qquad (7)
であることを示す。
式(6)から
2\lt a_n,
a_n \lt 2+\sum_{m=2}^{n}\frac{1}{m!} \qquad \qquad (8)
右辺の m は2以上の自然数なので、
\frac{1}{m!} \leq \frac{1}{(m-1)m}=\frac{1}{m-1}-\frac{1}{m}
である。故に、
a_n \lt 2+\sum_{m=2}^{n}(\frac{1}{m-1}-\frac{1}{m})=2+(1-\frac{1}{n})=3-\frac{1}{n}\lt 3

(3)数列 \{a_n\}_{n=1}^{\infty} は単調増加
n \geq 2 の時、常に a_n \lt a_{n+1} を示せばよい。
式(5)を利用すると(注参照)、
a_{n+1}=2+\sum_{m=2}^{n+1}\frac{1(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdots (1-\frac{m-1}{n+1})}{m!}
すると、
a_{n+1} - a_n = \sum_{m=2}^{n+1}\frac{1(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdots (1-\frac{m-1}{n+1})}{m!} - \sum_{m=2}^{n}\frac{1(1-\frac{1}{n})(1-\frac{2}{n})\cdots (1-\frac{m-1}{n})}{m!}
\quad 右辺の第一項の和を2つに分けると、
= \frac{1(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdots (1-\frac{n}{n+1})}{m!}
\quad + \sum_{m=2}^{n}\frac{1(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdots (1-\frac{m-1}{n+1})}{m!} - \sum_{m=2}^{n}\frac{1(1-\frac{1}{n})(1-\frac{2}{n})\cdots (1-\frac{m-1}{n})}{m!}

= \frac{ 1(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdots (1-\frac{n}{n+1}) }{m!}
\quad + \sum_{m=2}^{n}\frac{ 1(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdots (1-\frac{m-1}{n+1}) -1(1-\frac{1}{n})(1-\frac{2}{n})\cdots (1-\frac{m-1}{n})}{m!}
上の式で、全てのi\in \{1,2,,,,n\}に対して,(1-\frac{i}{n+1})\gt 0(1-\frac{i}{n+1})\gt (1-\frac{i}{n}) なので、
a_{n+1} - a_n \gt 0

(注)式(3)のnに n+1 を代入すればよい。

 ネイピア数 e について

定義;e\triangleq \lim_{}(1+\frac{1}{n})^nネイピア数と呼ぶ。
命題
(1) 2 \lt e \leq 3
(2)e=\sum_{m=0}^{\infty}\frac{1}{m!} \qquad ただし、0!\triangleq 1,\quad m!\triangleq 1\cdot 2\cdot 3\cdots (m-1)\cdot m

 三角関数の微分

 準備 

次の命題が、三角関数の微分を求めるうえで中心的役割を果たす。 
命題 
\lim_{\theta\to 0,\theta\neq 0}\frac{\sin \theta}{\theta}=1
証明
まず、\theta を正に保ちながら零に近づける場合を考える。
すると、 0 \lt \theta \lt \pi/2  と考えて良い。
点Oを中心にし、半径1の円を考え、円周上に一点Aをさだめる。
図のように、円周上の点Bを、線分OBが直線OAとなす角がx(ラジアン)となるようにとる。

図から\triangle{OAB} \subset 扇形OAB \subset \triangle{OAP}
\quad ここで、点PはAを通り線分OAと垂直な直線と半直線OBの交点。
すると、
\triangle{OAB}の面積 \lt 扇形OAB の面積 \lt \triangle{OAP}の面積
ここで、\triangle{OAB}の面積=\frac{1\cdot \sin{\theta}}{2},\quad 扇形OAB の面積=\pi\cdot 1^{2}\cdot \frac{\theta}{2\pi}\quad \triangle{OAP}の面積=\frac{1\cdot \tan{\theta}}{2}なので、
\frac{\sin{\theta}}{2} \lt \frac{\theta}{2}\lt \frac{\tan{\theta}}{2}=\frac{\sin{\theta}}{2\cos{\theta}}\qquad 各項を2倍すると、
\sin{\theta}\lt \theta \lt \frac{\sin{\theta}}{\cos{\theta}}
\quadここで \sin{\theta}\gt 0 なので、これで上式の各項を割ると、
1 \lt \frac{\theta}{\sin{\theta}} \lt \frac{1}{\cos{\theta}}
1 \gt \frac{\sin{\theta}}{\theta} \gt \cos{\theta}
故に、極限の性質から
1 \geq \lim_{\theta\to 0,\theta\neq 0}\frac{\sin \theta}{\theta} \geq \lim_{\theta\to 0,\theta\neq 0}\cos{\theta}=1
これより、\lim_{\theta\to 0,\theta\neq 0}\frac{\sin \theta}{\theta}=1 が得られる。

定理 三角関数の微分
(1)\frac{d}{d\theta}\sin{\theta}=\cos{\theta}
(2)\frac{d}{d\theta}\cos{\theta}=-\sin{\theta}
証明
(1); \frac{d}{d\theta}\sin{\theta} \triangleq \lim_{h\to 0,h\neq 0}\frac{\sin (\theta+h)-\sin \theta}{h}
ここで、
\sin (\theta+h)-\sin \theta = \sin \bigl((\theta + \frac{h}{2})+\frac{h}{2}\bigr) - \sin \bigl((\theta + \frac{h}{2})-\frac{h}{2}\bigr)
サイン関数の加法定理を適用すると
=\sin (\theta + \frac{h}{2})\cos \frac{h}{2} + \cos (\theta + \frac{h}{2})\sin \frac{h}{2} - \Bigl( \sin (\theta + \frac{h}{2})\cos \frac{h}{2} - \cos (\theta + \frac{h}{2})\sin \frac{h}{2} \Bigr) = 2\cdot \cos (\theta + \frac{h}{2})\sin \frac{h}{2}
故に、 \frac{d}{d\theta}\sin{\theta} \triangleq \lim_{h\to 0,h\neq 0}\frac{\sin (\theta+h)-\sin \theta}{h} = \lim_{h\to 0,h\neq 0}\frac{2\cdot \cos (\theta + \frac{h}{2})\sin \frac{h}{2}}{h}=\lim_{h\to 0,h\neq 0}\cos (\theta + \frac{h}{2})\frac{\sin \frac{h}{2}}{h/2}
=\lim_{h\to 0,h\neq 0}\cos (\theta + \frac{h}{2})\lim_{h\to 0,h\neq 0}\frac{\sin \frac{h}{2}}{h/2}
\quad ここで、
\quad \lim_{h\to 0,h\neq 0}\cos (\theta + \frac{h}{2}) = \cos \theta
\quad \lim_{h\to 0,h\neq 0}\frac{\sin \frac{h}{2}}{h/2} = 1 \quad (上の命題より)
\quad なので、
=\cos \theta

指数関数と対数関数

 実数の累乗

a を任意の実数、n を2以上の自然数とする。
a^1=a,\quad a^2=a\cdot a,\quad a^3=a^2\cdot a=a\dot a\cdot a \cdots a^n=a^{n-1}\cdot a, \cdots
を総称して、a の累乗と呼ぶ。
a^n を、a の n 乗 、n をその指数と呼ぶ。
この定義から次の規則が容易に導かれる。
命題1
a,b を任意の実数、m,nを任意の自然数とすると、
(1) a^{m}a^{n} = a^{m+n} \qquad \qquad \qquad (1)
(2) (a^{m})^n =a^{m n} \qquad \qquad \qquad (2)
(3) (ab)^n = a^n b^n \qquad \qquad \qquad (3)

命題2
(1)a を1より小さい正の実数とすると、数列 \{a^{n}\}_{n=1}^{\infty} は単調減少し、零に収束。
(2)a を1より大きい正の実数とすると、数列 \{a^{n}\}_{n=1}^{\infty} は単調増加し、いくらでも大きくなる(無限大に発散)。

 指数の整数への拡張

次に累乗に関する3つの規則が、そのまま成り立つようにしながら、指数を実数まで拡げよう。
上の定義から、
a \neq 0 の時は、任意の自然数m、nに対し、
a^m \div a^n = a^{m-n} \qquad (m\gt n) \qquad \qquad (1)
\qquad \qquad = 1 \qquad (m = n)\qquad \qquad \qquad(2)
\qquad \qquad = \frac{1}{a^{n-m}} \qquad (m \lt n)\qquad \qquad (3)
であることが分かる。
これが、一つの式 a^{m-n} で表わせるように、a の指数を取決めたい。
そのためには、指数が零の時、a^0 \triangleq 1
指数 m-n が負数の時 a^{m-n} \triangleq \frac{1}{a^{n-m}} 
と定義すればよい。
言い換えると、a (\neq 0)  の指数nが 零と負の整数のとき、
a^0 \triangleq 1, \qquad a^n \triangleq \frac{1}{a^{-n}} \qquad (n\lt 0)\qquad \qquad (4)
と定義する. すると、指数が整数の時、計算規則(1)、(2)、(3)を満たすことは、容易に確かめられる。

 指数の有理数への拡張

a を任意の正の実数、 \frac{m}{n} を任意の有理数のとき、
a の有理数乗 a^{\frac{m}{n}} を、次のような計算規則を満たすように定義しよう。

有理数乗に拡張した計算規則
\frac{m}{n},\quad \frac{m'}{n'} を任意の有理数、 a,\quad b を任意の正の実数とすると、
(1) a^{\frac{m}{n}}a^{\frac{m'}{n'}} = a^{\frac{m}{n} + \frac{m'}{n'}} \qquad \qquad \qquad (1)
(2) (a^{\frac{m}{n}})^{\frac{m'}{n'}} =a^{\frac{m}{n} \frac{m'}{n'}} \qquad \qquad \qquad (2)
(3) (ab)^{\frac{m}{n}} = a^{\frac{m}{n}} b^{\frac{m}{n}} \qquad \qquad \qquad (3)

累乗をn,n' を任意の自然数(正の整数)、 m, m' を任意の整数と仮定してよい。

 指数関数

aを任意の正の実数とする。
定義
f_{a}(x)\triangleq a^x \qquad (x は任意の実数) という関数を指数関数と呼ぶ。

命題1
(1)a が 1 より大きい実数の時,f_{a}(x)= a^x  は単調増加
(2)a が 1 より小さい実数の時,f_{a}(x)= a^x  は単調減少


命題2
指数関数 f_{a}(x)= a^x  は連続関数である。

 対数関数

指数関数と対数関数の微分

個人用ツール