Loading [MathJax]/jax/output/HTML-CSS/jax.js

物理/8章の付録

提供: Internet Web School

UNIQ1c743c457ae5d4ff-MathJax-2-QINU2 による版

目次

[非表示]

 8章の付録

 問の解答

 問

limn(1+1n)n が存在し、2より大きく3以下であることを証明する。
(1)準備; 2項定理;を用いた展開
an(1+1n)n(n) とおく。
すると、 2a1=1+11=2<a2=(1+12)2=214である。
以下に、数列 {an}n=1 が単調増大で、有界(2より大、3より小)である事を示す。
するとテキストの定理により、この数列は2より大きく、3以下のある実数に収束することが分かる。
nが3以上の自然数の時は、anを2項定理を用いて展開すると
  an=(1+1n)n=nm=0nCm1nm(1n)m(1)
  ここで nCm は、n個のものからm個取り出す取り出し方の総数で、
mが1以上でn 以下の自然数の時は
nCm=n!m!(nm)!(2)
ここで、m が1以上の自然数の時は m!123(m1)m
mが零の時は 0!1 と定義。

すると、
nC0=n!0!n!=1(3) 
m1のとき、nCm=n!m!(nm)!=n(n1)(n2)(n(m1))m!(4)
式(1)に式(2)を代入し,式(3)、(4)を利用して計算すると
an=1+nm=1n(n1)(n2)(n(m1))m!1nm(1n)m
=2+nm=21(11n)(12n)(1m1n)m!(5)
ここで、n より小さい全ての自然数 i に対して
0<1in<1 なので、
2<an<2+nm=21m!(6)

(2)すべての2以上の自然数 n に関して、
2<an<3(7)
であることを示す。
式(6)から
2<an,
an<2+nm=21m!(8)
右辺の m は2以上の自然数なので、
1m!1(m1)m=1m11m
である。故に、
an<2+nm=2(1m11m)=2+(11n)=31n<3

(3)数列 {an}n=1 は単調増加
n2 の時、常に an<an+1 を示せばよい。
式(5)を利用すると(注参照)、
an+1=2+n+1m=21(11n+1)(12n+1)(1m1n+1)m!
すると、
an+1an=n+1m=21(11n+1)(12n+1)(1m1n+1)m!nm=21(11n)(12n)(1m1n)m!
右辺の第一項の和を2つに分けると、
=1(11n+1)(12n+1)(1nn+1)m!
+nm=21(11n+1)(12n+1)(1m1n+1)m!nm=21(11n)(12n)(1m1n)m!

=1(11n+1)(12n+1)(1nn+1)m!
+nm=21(11n+1)(12n+1)(1m1n+1)1(11n)(12n)(1m1n)m!
上の式で、全てのi{1,2,,,,n}に対して,(1in+1)>0(1in+1)>(1in) なので、
an+1an>0

(注)式(3)のnに n+1 を代入すればよい。

 ネイピア数 e について

定義;elim(1+1n)nネイピア数と呼ぶ。
命題1
(1)2<e3
(2)e=m=01m!0!1,m!123(m1)m(9)

 三角関数の微分

 準備 

次の命題が、三角関数の微分を求めるうえで中心的役割を果たす。 
命題2 
limθ0,θ0sinθθ=1
証明
まず、θ を正に保ちながら零に近づける場合を考える。
すると、0<θ<π/2 と考えて良い。
点Oを中心にし、半径1の円を考え、円周上に一点Aをさだめる。
図のように、円周上の点Bを、線分OBが直線OAとなす角がx(ラジアン)となるようにとる。

図からOABOABOAP
ここで、点PはAを通り線分OAと垂直な直線と半直線OBの交点。
すると、
OAB< OAB < OAP
ここで、OAB=1sinθ2,OAB=π12θ2πOAP=1tanθ2なので、
sinθ2 <θ2<tanθ2=sinθ2cosθ各項を2倍すると、
sinθ<θ<sinθcosθ
ここで sinθ>0 なので、これで上式の各項を割ると、
1<θsinθ<1cosθ
1>sinθθ>cosθ
故に、極限の性質から
1limθ0,θ0sinθθlimθ0,θ0cosθ=1
これより、limθ0,θ0sinθθ=1 が得られる。

定理1 三角関数の微分
(1)ddθsinθ=cosθ
(2)ddθcosθ=sinθ
証明
(1); ddθsinθlimh0,h0sin(θ+h)sinθh
ここで、
sin(θ+h)sinθ=sin((θ+h2)+h2)sin((θ+h2)h2)
サイン関数の加法定理を適用すると
=sin(θ+h2)cosh2+cos(θ+h2)sinh2(sin(θ+h2)cosh2cos(θ+h2)sinh2)=2cos(θ+h2)sinh2
故に、 ddθsinθlimh0,h0sin(θ+h)sinθh=limh0,h02cos(θ+h2)sinh2h=limh0,h0cos(θ+h2)sinh2h/2
=limh0,h0cos(θ+h2)limh0,h0sinh2h/2
ここで、
limh0,h0cos(θ+h2)=cosθ
limh0,h0sinh2h/2=1(
なので、
=cosθ

指数関数と対数関数

 実数の累乗

a を任意の実数、n を2以上の自然数とする。
a1=a,a2=aa,a3=a2a=a˙aaan=an1a, 
を総称して、a の累乗と呼ぶ。
an を、a の n 乗 、n をその指数と呼ぶ。
命題1
a,b を任意の実数、m,nを任意の自然数とすると、
(1) aman=am+n
(2) (am)n=amn
(3) (ab)n=anbn

そこで次の累乗に関する計算規則を定義する。

累乗に関する計算規則
a,b を任意の正の実数、α,βを指数を表わす数とすると、
(1) aαaβ=aα+β()
(2) (aα)β=aαβ()
(3) (ab)β=aβbβ()

命題2
(1)a を1より小さい正の実数とすると、数列 {an}n=1 は単調減少し、零に収束。
(2)a を1より大きい正の実数とすると、数列 {an}n=1 は単調増加し、いくらでも大きくなる(無限大に発散)。

これより、累乗に関する3つの規則が、そのまま成り立つようにしながら、指数を実数まで拡げよう。

 指数の整数への拡張

まず指数を、累乗に関する3つの規則が成り立つようにしながら、整数に拡張する。
累乗の定義から、
a0 の時は、任意の自然数m、nに対し、
am÷an=amn(m>n) (1)
=1(m=n)(2)
=1anm(m<n)(3)
であることが分かる。
これを一つの式 amn で表わせるように、a の指数を取決めたい。
そのためには、指数が零の時、a01
指数 mn が負数の時 amn1anm 
と定義すればよい。
言い換えると、a(0) の指数nが 零と負の整数のとき、
a01,an1an(n<0)(4)
と定義する。
すると、指数が整数の時、3つの累乗規則を満たすことは、容易に確かめられる。

 指数の有理数への拡張

a を任意の正の実数、 mn を任意の有理数のとき、
a の有理数乗 amn を、次のような計算規則を満たすように定義しよう。

amn=amn なので、指数n を任意の自然数(正の整数)、 m を任意の整数と仮定してよい。
累乗規則(2)を満たすように定義するには、
(amn)n=(amn)n1=am 
でなければならない。
そこで、 n乗すると、am となる正の実数をamn と決めることが 自然であろう。
最初に、この定義できちんと正の実数が一つだけ決まることを証明しよう。

命題3
a を任意の正の実数、m,n を任意の整数とする。
すると、n乗すると am になる正の実数 b が存在し、ただ一つに限る。
証明;
f(x)xn という、零と正の実数の上で定義された、関数を考える。
この関数はxが増加するにつれて、連続的に、零から正の無限大に狭義に単調に増加(注参照)していく。
一方、am は必ず正の実数である。
そのため、xが零のときは、 f(x)<am であり、
xを少し増加させても、同じ関係が成り立つ。
関数は単調に零から∞まで増加していくので、
ある正の実数(b と書こう)まで、f(x)<am であり
b以上の実数xに対しては、f(x)am となることが分かる。
関数値は、x の変化につれて連続に変化するのでf(b)=am である。
関数fが狭義単調増加なので,b以外の正の実数xでは、f(x)am である。
(証明終り)
(注) 関数fが狭義単調増加とは、x<yf(x)<f(y) を満たすこと。

命題4
任意の正の実数 a にたいして、その有理数乗を上記のように定義すると
3つの累乗規則 (1)~(3) が成り立つ。
証明; ① 累乗規則(1)が成り立つことを示す。
2個の有理数の指数を 自然数n,˜nと整数m,˜m を用いて、
α=mn,β=˜m˜nと表現する。
すると、累乗規則(1)は、次のように表される。
amna˜m˜n=amn+˜m˜n
この左辺を bamna˜m˜n,
右辺を camn+˜m˜n とおく。
bn˜n=cn˜n (A) 
であることを示せば、b=c が得られ,
累乗規則(1)が成立することが分かる。
まず左辺を考える。
bn˜n= (amna˜m˜n)n˜n
指数が自然数の累乗規則(3)から
=(amn)n˜n(a˜m˜n)n˜n
指数が自然数の累乗規則(2)から
=((amn)n)˜n((a˜m˜n)˜n)n
実数の有理数乗の定義から、
=(am)˜n(a˜m)n
指数が整数の累乗規則(2)から
=am˜na˜mn
指数が整数の累乗規則(1)から
=am˜n+˜mn
故に、bn˜n=am˜n+˜mn
次に、右辺を考える。
cn˜n=(amn+˜m˜n)n˜n

=(am˜n+n˜mn˜n)n˜n
実数の有理数乗の定義から、
=am˜n+n˜m=bn˜n
これで、式(A)が示され、累乗規則(1)が成り立つことが証明できた。
 

② 累乗規則(2)が成り立つことを示す。
③ 累乗規則(3)が成り立つことを示す。
証明終わり。

指数が有理数の場合,命題2は次のように拡張出来きる。

命題5
有理数全体の上で定義される関数
fa(α)aα (α)を考える。
(1)a が1より小さい正の実数ととき、
faは単調減少し、
limαfa(α)=0limαfa(α)=
2)a を1より大きい正の実数とすると、
faは単調増大で
limαfa(α)= limαfa(α)=0
3)a = 1 のとき、fa  1
証明
証明終わり

 指数の実数への拡張

任意の実数 α に対して aα を次のように定義する。
定義
{αn}n=1 を α に収束する有理数の単調増加数列とするとき、
aαlimnaαn 
この定義により、唯一の実数が必ず定まることが次のようにして分かる。
命題6
① 上記の有理数の単調増加列 {αn}n=1 は収束する。
② α に収束する、別の有理数の単調増加数列 {βn}n=1 に対して、limnaβn=limnaαn 
証明
証明終わり

 指数関数

aを任意の正の実数とする。
定義
fa(x)ax(x ) という関数を指数関数と呼ぶ。

命題1
(1)a が 1 より大きい実数の時,fa(x)=ax は単調増加
(2)a が 1 より小さい実数の時,fa(x)=ax は単調減少
(3)a=1 のとき、f1(x)=1x1

命題2
指数関数 fa(x)=ax は
(1) 連続である。
(2) 定義域は実数全体R
(3) a1 の時、
値域 R{ax|xR}は (0,){x|xR,x>0} に等しく、
(4) 一対一関数(xxaxax)
である。

命題3
e をネイピア数とすると
ex=n=0xnn!(x)(1)
証明
補助命題
実数全体の上の関数 Exp を
Exp(x)n=0xnn! 
で定義する。
この関数は次の性質をもつ。
(1) Exp(1)=e
(2) Exp(x+y)=Exp(x)Exp(y)(x,y)
(3) 任意の有理数 α に対して Exp(α)=eα
(4) 関数 Exp は微分可能、従って連続関数。
補助命題の証明
補助命題の証明終り。
証明終わり。

 対数関数

1と異なる正の実数 a を考える。
  指数関数 fa(x)=ax は,命題2から、
  R から (0,) の上への、一対一、連続関数である。
  すると、その逆関数(0,)axxR が定義できる。
  定義
a を1と異なる正の実数とする。
logaaxx(1) 
この関数を、a を底とする対数関数とよぶ。

  定理1
a を 1と異なる正の実数とする。
この時、a を底とする対数関数 loga は、
(0,) から R の上への一対一で
連続な関数である。

定理2
a を 1と異なる正の実数とする。
すると 1) 任意の2つの正の実数b、cに対して, logab+logac=logabc(2)
2) 任意の2つの正の実数b、cに対して, logablogac=logabc(3)
  


 

指数関数と対数関数の微分

個人用ツール