物理/解析入門(3)級数、冪級数と項別微分・項別積分及び可微分関数のテイラー展開

提供: Internet Web School

UNIQ7857ae6515c951aa-MathJax-2-QINU2 による版
(差分) ←前の版 | 最新版 (差分) | 次の版→ (差分)

目次

 「 8.4 解析入門(3)関数列の項別の積分・微分、 級数・冪級数及び可微分関数のテイラー展開

 序

 関数列・関数族の項別積分と項別微分

 項別積分定理  

 項別微分定理  

 級数

無限級数の収束性

 条件収束と絶対収束

 収束条件 

 幕級数(整級数)

 テイラー展開とテイラーの定理

微分可能な関数 UNIQ620dc2481c127e19-MathJax-7-QINU の導関数 UNIQ620dc2481c127e19-MathJax-8-QINU が微分可能ならば、
その導関数 UNIQ620dc2481c127e19-MathJax-9-QINU が考えられる。
これをfの2階の導関数という。
例えば、変数tの関数 UNIQ620dc2481c127e19-MathJax-10-QINU が時刻tの質点の位置とすると、
その導関数は速度、2階導関数は加速度を表すことを第2章の力学で学んだ。
さらに高階の微分が可能な関数を考え、その性質を考察しよう。

 テイラー展開とテイラーの定理

テイラー展開、テイラー級数についての入門書は

より高度なテイラーの定理などは以下の記事を。但し証明はない。

そこでテイラーの定理について説明する。

 テイラーの定理  RT

無限級数 

 級数と収束  

 級数と収束  === 正項級数の収束条件 =

無限級数の項別積分

整級数(幕級数) 

 整級数と収束  

 項別微分定理  

 整級数の微分可能性  

個人用ツール