拘束のある問題

提供: Internet Web School

UNIQ212148046dab0e9a-MathJax-2-QINU2 による版

目次

等式拘束のある問題

陰関数定理とラグランジュ乗数

以下の問題を考える.


\(L(x,y)=x+y\)とするとき, 半径1の円周

\(x^2+y^2=1 \qquad (1)\)

上の点\((x,y)\)で\(L(x,y)=x+y\)の最大にするものを求めよ。


関数の極値条件

実数値関数\(F(x)\)が\(x=x_0\)で極小値または極大値をとり,かつ,\(x=x_0\)で微分可能であれば,

\(F(x)\)の\(x=x_0\)での微分係数は\(0\)である。

\(\frac{dF}{dx}(x_0) = 0\)


半径1の円の方程式

\(x_2+y_2=1\qquad (1)\)

に注目する。判りやすいように,

\(1\ge x \ge -1,1 \ge y \ge 0\) としておく.

\(g(x)=\sqrt{1-x^2}\) とすると, \(1\ge x \ge -1,1 \ge y \ge 0\)では\((1)\)の方程式を満たす\(x,y\)については \(y=g(x)\) という関係が成り立っている.

この\(g(x)\)という関数は,\((1)\)式の中には出てこない.\((1)\)からこのように間接的に導き出される関数を陰関数と呼ぶ.


一般化すれば特定の条件のもとに \(f(x,y)=0\)という式から陰関数\(y=g(x)\)が定義される。

上の例では \(f(x,y)=x^2+y^2-1\)

しかし,何時でも上の例のように,\(f(x,y)=0\)から陰関数\(y=g(x)\)が定義されるわけではない.


陰関数定理

ある領域D\(\subseteq R\times R\)で関数\(f(x,y)\)が連続でかつ,\(x,y\)について偏微分可能で, その偏導関数

\(\frac{\partial f}{\partial x}(x,y) \qquad (1)\)

\(\frac{\partial f}{\partial y}(x,y) \qquad (2)\) も\((x,y)\)について連続とする。

D内の1点\((x_0,y_0)\)で

\(f(x_0,y_0)=0\)

であり,

\(\frac{\partial f}{\partial y}(x_0,y_0)\neq 0 \qquad (4)\)

とする. このとき,\(x_0\)を含む\(]a,b[\)とその上の連続関数\(g(x)\)が存在し,

1) 区間\(]a,b[\)上で\(f(x,g(x))=0\)

2) \(y_0=g(x_0)\)

3) 区間\(]a,b[\)上で,

\(\frac{dy}{dx}=-\frac{\partial f / \partial x}{\partial f / \partial y} \qquad (5)\)

ラグランジュ乗数法

関数\(L(x,y)\)が,制約条件 \(f(x,y)=0\) の元に\((x,y)=(x_0,y_0)\)で極値(極大値か極小値)をとるとする。

\(L(x,y)\)が\((x,y)\)について微分可能な関数で, 関数\(f(x,y)\)は\((x_0,y_0)\)が上の陰関数定理を適用できる条件を満たしているものとする。

\(x_0\)の近傍で関数\(g(x)\)が存在して,\(x_0\)のその近傍では

\(f(x,g(x))=0\) が成り立ち,\(y_0=g(x_0)\),\(f(x_0,g(x_0))=0\)も成り立っている.

関数\(L(x,y)\)は\((x_0,y_0)\)で極値(極大値か極小値)をとるから \(F(x)=L(x,g(x))\)も\(x=x_0\)で極値を取る.


極値条件により

\(\frac{dF}{dx}(x_0)=0 \qquad (6)\)

である.

この\(x\)についての微分を求めると\(F(x)\)は合成関数であるから

\( \frac{dF}{dx}(x_0)=\frac{\partial}{\partial x}L(x_0,g(x_0))+\frac{\partial}{\partial y}L(x_0,g(x_0))\frac{d}{dx}g(x_0) \qquad (7) \\ \frac{dy}{dx}=-\frac{\partial f / \partial x}{\partial f / \partial y} \qquad(8) \)

\(y=g(x)\)であるから\((8)\)式を上の\((7)\)式に代入し


\(\lambda=\frac{\partial}{\partial y}L(x_0,g(x_0))\{-\frac{\partial f}{\partial y}\}^{-1} \qquad (9)\)

という変数を使うと,

\(0=\frac{dF}{dx}(x_0)=\frac{\partial}{\partial x}L(x_0,g(x_0))+\lambda\frac{\partial}{\partial x}f(x_0,g(x_0)) \qquad (10)\)

また

\(\lambda \frac{\partial}{\partial y}f(x_0,g(x_0)=-\frac{\partial}{\partial y}L(x_0,g(x)) \qquad (11)\)

から

\(0=\frac{\partial}{\partial y}L(x_0,g(x_0))+\lambda \frac{\partial}{\partial y}f(x_0,g(x_0)) \qquad (12) \)

すなわち\(\lambda\)という新しい変数を使って

\(H(x,y,\lambda)=L(x,y)+\lambda f(x,y) \qquad (13)\)

という関数を造ると:

関数\(L(x,y)\)が制約条件\(f(x,y)=0\) を充たすという条件の下に \((x,y)=(x_0,y_0)\)で極値(極大値か極小値)をとる という条件から\(H\)についての制約のない場合の極値条件

\( \frac{\partial}{\partial x}H(x_0,y_0,\lambda)=0 \qquad (14) \\ \frac{\partial}{\partial y}H(x_0,y_0,\lambda)=0 \qquad (15) \\ \frac{\partial}{\partial \lambda}H(x_0,y_0,\lambda)=f(x_0,y_0)=0 \qquad (16) \)


が導かれる.制約条件付きの極値問題から,\(\lambda\)という人工的な変数を使って

\(目的の関数+\lambda\times (制約条件を表す関数)\) の制約条件のない場合の極値条件が導かれる.

ただしこの議論は「その点が最大(小)値を与える」\(\Rightarrow\) 「その点が極値を与える」\(\Rightarrow \) 「その点での\(微分係数=0\)」


という必要条件の連鎖であるので注意が必要である.

「\(微分係数=0\)」は必要条件であるから, これが満たされても,極値かどうかチェックの必要があり,さらには\(H\)の極値を与える\((x_0,y_0)\)が求められたとしても, それが最大(小)値を与えるのか確かめる必要がある。

また,少なくとも\(L\)と\(f\)が\(x,y\)について微分可能であることも必要である.

ここで使われた\(\lambda\)はラグランジュ乗数と呼ばれる.7 上の問題に適用すると

\(H(x,y,\lambda)=x+y+\lambda (x_^2+y_^2 -1)\)


\( 1+ 2\lambda x_0 = \frac{\partial}{\partial x}H(x_0,y_0,\lambda)=0 \qquad (17) \\ 1+ 2\lambda y_0 = \frac{\partial}{\partial y}H(x_0,y_0,\lambda)=0 \qquad (18) \\ x_0^2+y_0^2 -1 = \frac{\partial}{\partial \lambda}H(x_0,y_0,\lambda)=0 \qquad (19) \)


\((17) \)式から \(\lambda \neq 0 \) であり,

\((18),(19) \)式から

\(x_0 = -\frac{1}{2\lambda} ,y_0 = -\frac{1}{2\lambda}\)

これを\((19)\) 式に代入して

\(\frac{1}{2\lambda^2} -1 = 0\)

よって

\(\lambda=\frac{\sqrt{2}}{2} \) または \(\lambda=-\frac{\sqrt{2}}{2} \)

\(\lambda=\frac{\sqrt{2}}{2} \) のとき\(x_0 = y_0= -\frac{\sqrt{2}}{2}\) であり,\(L(x_0,y_0)=x_0+y_0= -\sqrt{2} \)

\(\lambda=-\frac{\sqrt{2}}{2} \) のとき\(x_0 = y_0= \frac{\sqrt{2}}{2}\) であり,\(L(x_0,y_0)=x_0+y_0= \sqrt{2} \)


従って 等式拘束条件 \(x^2+y^2=1 \) の下で\(L(x,y)=x+y \) の 最大値は\(x = y= \frac{\sqrt{2}}{2}\)のときで\(\sqrt{2} \)


以上を一般化したものが以下である.


\( l :(x_1,x_2,\cdots,x_n) \in R^n \mapsto \in R \)

が\(\bar{\bf x}=(\bar{x}_1,\bar{x}_2,\cdots,\bar{x}_n)\)で\(m\)個の制約条件

\( g_1(\bar{x}_1,\bar{x}_2,\cdots,\bar{x}_n)=0\\ g_2(\bar{x}_1,\bar{x}_2,\cdots,\bar{x}_n)=0\\ g_3(\bar{x}_1,\bar{x}_2,\cdots,\bar{x}_n)=0\\ \cdots \\ g_m(\bar{x}_1,\bar{x}_2,\cdots,\bar{x}_n)=0 \)

のもとでの極少(極大)値をとるものとする.さらに\(m\)個の\(n\)次元 ベクトル

\( \frac{\partial g_1 }{\partial {\bf x}}(\bar{\bf x})^T= \bigl{(}\frac{\partial g_1}{\partial x_1}(\bar{\bf x}),\frac{\partial g_1}{\partial x_2}(\bar{\bf x})\cdots,\frac{\partial g_1}{\partial x_n}(\bar{\bf x}) \bigr{)}\\ \frac{\partial g_2 }{\partial {\bf x}}(\bar{\bf x})^T=\bigl{(}\frac{\partial g_2}{\partial x_1}(\bar{\bf x}),\frac{\partial g_2}{\partial x_2}(\bar{\bf x})\cdots,\frac{\partial g_2}{\partial x_n}(\bar{\bf x}) \bigr{)} \\ \frac{\partial g_3 }{\partial {\bf x}}(\bar{\bf x})^T=\bigl{(}\frac{\partial g_3}{\partial x_1}(\bar{\bf x}),\frac{\partial g_3}{\partial x_2}(\bar{\bf x})\cdots,\frac{\partial g_3}{\partial x_n}(\bar{\bf x}) \bigr{)} \\ \cdots \\ \frac{\partial g_m }{\partial {\bf x}}(\bar{\bf x})^T=\bigl{(}\frac{\partial g_m}{\partial x_1}(\bar{\bf x}),\frac{\partial g_m}{\partial x_2}(\bar{\bf x})\cdots,\frac{\partial g_m}{\partial x_n}(\bar{\bf x}) \bigr{)} \\ \)

が一次独立とする.このとき,一変数関数の場合と同様,以下が成立つ.すなわち, \(m\)次元のラグランジュ乗数ベクトル

\( {\bf \lambda}=(\lambda_1,\lambda_2,\cdots,\lambda_m) \) が存在し,

\( l({\bf x})+\lambda_1 g_1({\bf x})+\lambda_2 g_2({\bf x}) + \cdots +\lambda_m g_m({\bf x}) \)

は\(\bar{\bf x}=(\bar{x}_1,\bar{x}_2,\cdots,\bar{x}_n)\)で停留条件を充す.

すなわち

\( \frac{\partial}{\partial x_1}\bigl{[}l({\bf x})+\lambda_1 g_1({\bf x})+\lambda_2 g_2({\bf x})+ \cdots +\lambda_m g_m({\bf x}) \bigr{]} =0\\ \frac{\partial}{\partial x_2}\bigl{[}l({\bf x})+\lambda_1 g_1({\bf x})+\lambda_2 g_2({\bf x})+ \cdots +\lambda_m g_m({\bf x}) \bigr{]} =0 \\ \cdots \\ \frac{\partial}{\partial x_n}\bigl{[}l({\bf x})+\lambda_1 g_1({\bf x})+\lambda_2 g_2({\bf x})+ \cdots +\lambda_m g_m({\bf x})\bigr{]}=0 \)


が成りたつ.


不等式拘束のある問題

前項では,等式拘束問題を扱った.この項では不等式拘束問題を扱う. 先ず,\(R^m\)の部分集合

\( P=\{ {\bf p} |{\bf p} =(p_1,p_2,\cdots,p_m)^T \in R^m, p_1 \ge 0,p_2 \ge 0,\cdots,p_m \ge 0 \} \)

を定義しておく.この(正錐)\(P\)を使って,\({\bf p},{\bf q} \in R^m\)の 順序(大小)を

\( {\bf p} \ge {\bf q} \Leftrightarrow {\bf p} - {\bf q} \in P \)

で定義する.

\(R^n\)から\(R^m\)への微分可能な写像

\( G: {\bf x} =(x_1,x_2,\cdots,x_n) \in R^n \mapsto G({\bf x}) = \left ( \begin{array}{c} g_1({\bf x})\\ g_2({\bf x})\\ g_3({\bf x})\\ \cdots \\ g_m({\bf x}) \end{array} \right ) \in R^m \) で定義されるものとする.

不等式制約

\(G({\bf x}) = \left ( \begin{array}{c} g_1({\bf x})\\ g_2({\bf x})\\ g_3({\bf x})\\ \cdots \\ g_m({\bf x}) \end{array} \right ) \le {\bf 0}= \left ( \begin{array}{c} 0\\ 0\\ 0\\ \vdots \\ 0 \end{array} \right ) \)

について,この項では以下のクーン・タッカーの条件が成立つものとする.


クーン・タッカーの条件

\( G({\bf x}) \le {\bf 0} \) を充たす任意の\({\bf x} \in R^n\)について

\(G({\bf x})+ \frac{d G}{d {\bf x}}^T({\bf x}) {\bf k} \leq 0 \)

となる \( {\bf k}=(k_1,k_2,\cdots,k_n)^T \in R^n\)が存在する.

ただし,


\( \frac{d G}{d {\bf x}}^T({\bf x})= \left( \begin{array}{cccc} \frac{\partial g_1}{\partial x_1}({\bf x}) & \frac{\partial g_1}{\partial x_2}({\bf x}) & \ldots& \frac{\partial g_1}{\partial x_m}({\bf x})\\ \frac{\partial g_2}{\partial x_1}({\bf x}) & \frac{\partial g_2}{\partial x_2}({\bf x}) & \ldots& \frac{\partial g_2}{\partial x_m}({\bf x})\\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial g_m}{\partial x_1}({\bf x}) & \frac{\partial g_m}{\partial x_2}({\bf x}) & \cdots& \frac{\partial g_m}{\partial x_n}({\bf x}) \end{array} \right) \)

ここで, \(G({\bf x}) \le {\bf 0}\) は順序(大小関係)を

\( P=\{ {\bf p} |{\bf p} =(p_1,p_2,\cdots,p_m)^T \in R^m, p_1 \ge 0,p_2 \ge 0,\cdots,p_m \ge 0 \} \\ {\bf p} \ge {\bf q} \Leftrightarrow {\bf p} - {\bf q} \in P \)

定義する場合,

\( g_1({\bf x}) \le 0 ,g_2({\bf x}) \le 0, g_3({\bf x}) \le 0, \cdots, g_m({\bf x}) \le 0 \)

と同値になる.

停留条件

以上のクーン・タッカーの条件下で,


微分可能な写像 \( l :(x_1,x_2,\cdots,x_n) \in R^n \mapsto \in R \)

が不等式制約\(G({\bf x}) \le {\bf 0}\) のもとで

\(\bar{\bf x}=(\bar{x}_1,\bar{x}_2,\cdots,\bar{x}_n)\) で極少(極大)値をとるものとすると,\(m\)次元のラグランジュ乗数ベクトル

\( {\bf \lambda}=(\lambda_1,\lambda_2,\cdots,\lambda_m) \ge {\bf 0} \) が存在し,

\( l({\bf x})+ G({\bf x}) {\bf \lambda} = l({\bf x})+\lambda_1 g_1({\bf x})+\lambda_2 g_2({\bf x}) + \cdots +\lambda_m g_m({\bf x}) \)

は,\(\bar{\bf x}=(\bar{x}_1,\bar{x}_2,\cdots,\bar{x}_n)\)で停留条件を充たす.


すなわち

\( \frac{d l}{d {\bf x}}(\bar{\bf x})+ \frac{d G}{d {\bf x}}(\bar{\bf x}) {\bf \lambda} = \left( \begin{array}{c} \frac{\partial l}{\partial x_1}(\bar{\bf x})\\ \frac{\partial l}{\partial x_2}(\bar{\bf x})\\ \vdots\\ \frac{\partial l}{\partial x_n}(\bar{\bf x})\\ \end{array} \right) + \left( \begin{array}{cccc} \frac{\partial g_1}{\partial x_1}({\bf x}) & \frac{\partial g_2}{\partial x_1}({\bf x}) & \ldots& \frac{\partial g_m}{\partial x_1}({\bf x})\\ \frac{\partial g_1}{\partial x_2}({\bf x}) & \frac{\partial g_2}{\partial x_2}({\bf x}) & \ldots& \frac{\partial g_m}{\partial x_2}({\bf x})\\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial g_1}{\partial x_n}({\bf x}) & \frac{\partial g_2}{\partial x_n}({\bf x}) & \cdots& \frac{\partial g_m}{\partial x_n}({\bf x}) \end{array} \right) \left( \begin{array}{c} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_m \end{array} \right) = \left ( \begin{array}{c} 0\\ 0\\ \vdots \\ 0 \end{array} \right ) \)

が成りたつ.

さらに\(\bar{\bf x}=(\bar{x}_1,\bar{x}_2,\cdots,\bar{x}_n)\)については,

\( G(\bar{\bf x}){\bf \lambda}=\lambda_1 g_1(\bar{\bf x})+\lambda_2 g_2(\bar{\bf x}) + \cdots +\lambda_m g_m(\bar{\bf x}) =0 \)

が成立つ.

\( {\bf \lambda}=(\lambda_1,\lambda_2,\cdots,\lambda_m) \ge {\bf 0} \)

\( \lambda_1 \ge 0,\lambda_2\ge 0,\cdots,\lambda_m \ge 0 \)

と同値になる.

個人用ツール