Loading [MathJax]/jax/output/HTML-CSS/jax.js

物理/8章の付録

提供: Internet Web School

UNIQ35bd385451bf3d43-MathJax-2-QINU2 による版

目次

[非表示]

8章の付録

問の解答

(1)準備2項定理;を用いた展開
an(1+1n)n(n) とおく。
すると、 2a1=1+11=2<a2=(1+12)2=214である。
以下に、数列 {an}n=1 が単調増大で、有界(2より、3より小)である事を示す。するとテキストの定理により nが3以上の自然数の時は、anを2項定理を用いて展開すると
  an=(1+1n)n=nm=0nCm1nm(1n)m(1)
  ここで nCm は、n個のものからm個取り出す取り出し方の総数で、
mが1以上でn 以下の自然数の時は
nCm=n!m!(nm)!=n(n1)(n2)(nm+1)m!(2)
ここで、m が1以上の自然数の時は m!123(m1)m
mが零の時は nC01 、0!1と定義する。

式(2)を式(1)に代入して計算すると
an=1+nm=1n(n1)(n2)(nm+1)m!1nm(1n)m
=1+nm=11(11n)(12n)(1m1n)m!
=2+nm=21(11n)(12n)(1m1n)m!(3)
ここで、n より小さい全ての自然数 i に対して
0<1in<1 なので、
2<an<2+nm=21m!(4)

(2)すべての2以上の自然数 n に関して、
2<an<3(5)
であることを示そう。
式(3)から、2<an は明らか。
式(4)から
an<2+nm=21m!(6)
右辺の m は2以上の自然数なので、
1m!1(m1)m=1m11m
である。故に、
an<2+nm=2(1m11m)=2+(11n)=31n<3

(3)数列 {an}n=1 は単調増加
n2 の時、常に an<an+1 を示せばよい。
式(3)を利用すると(注参照)、
an+1=2+n+1m=21(11n+1)(12n+1)(1m1n+1)m!
すると、
an+1an=n+1m=21(11n+1)(12n+1)(1m1n+1)m!nm=21(11n)(12n)(1m1n)m!
右辺の第一項の和を2つに分けると、
=1(11n+1)(12n+1)(1nn+1)m!
+nm=21(11n+1)(12n+1)(1m1n+1)m!nm=21(11n)(12n)(1m1n)m!

=1(11n+1)(12n+1)(1nn+1)m!
+nm=21(11n+1)(12n+1)(1m1n+1)1(11n)(12n)(1m1n)m!
上の式で、全てのi{1,2,,,,n}に対して,(1in+1)>0(1in+1)>(1in) なので、
an+1an>0

(注)式(3)のnに n+1 を代入すればよい。

 三角関数の微分

 準備 

次の命題が、三角関数の微分を求めるうえで中心的役割を果たす。 
命題 
limθ0,θ0sinθθ=1
証明
まず、θ を正に保ちながら零に近づける場合を考える。
すると、0<θ<π/2 と考えて良い。
点Oを中心にし、半径1の円を考え、円周上に一点Aをさだめる。
図のように、円周上の点Bを、線分OBが直線OAとなす角がx(ラジアン)となるようにとる。

図からOABOABOAP
ここで、点PはAを通り線分OAと垂直な直線と半直線OBの交点。
すると、
OAB< OAB < OAP
ここで、OAB=1sinθ2,OAB=π12θ2πOAP=1tanθ2なので、
sinθ2 <θ2<tanθ2=sinθ2cosθ各項を2倍すると、
sinθ<θ<sinθcosθ
ここで sinθ>0 なので、これで上式の各項を割ると、
1<θsinθ<1cosθ
1>sinθθ>cosθ
故に、極限の性質から
1limθ0,θ0sinθθlimθ0,θ0cosθ=1
これより、limθ0,θ0sinθθ=1 が得られる。

定理 三角関数の微分
(1)ddθsinθ=|cosθ
(2)ddθcosθ=|sinθ
証明
(1); ddθsin\thetatlimh0,h0sin(\thetat+h)sinθh
ここで、
sin(\thetat+h)sinθ=sin((θ+h2)+h2)sin((θ+h2)h2)
サイン関数を適用すると =sin(θ+h2)cosh2+cos(θ+h2)sinh2(cos(θ+h2)sinh2+sin(θ+h2)cosh2)======= ===an 2a^1=a,\quad a^2=a\cdot a,\quad a^3=a^2\cdot a=a\dot a\cdot a \cdots a^n=a^{n-1}\cdot a, \cdotsa a^nann a,b m,n(1)a^{m}a^{n} = a^{m+n} \qquad \qquad \qquad (1)(2)(a^{m})^n =a^{m n} \qquad \qquad \qquad (2)(3)(ab)^n = a^n b^n \qquad \qquad \qquad (3)(4)a^m \div a^n = a^{m-n} \quad (when\quad m\gt n)\qquad \qquad \qquad = 1 \quad (when \quad m = n)\qquad \qquad \qquad = \frac{1}{a^{n-m}} \quad (when\quad m \lt n)$
これから、この規則が成り立つようにしながら、累乗の定義を拡張し、指数が任意の実数にまで拡げよう。

指数を整数まで拡張する

指数を有理数まで拡張する

指数を実数まで拡張する

 指数関数

 対数関数

指数関数と対数関数の微分

個人用ツール