提供: Internet Web School
UNIQ3b7625dd17869091-MathJax-2-QINU2 による版
表組みの例
Food complements
オレンジ
| りんご
|
パン
| パイ
|
バター
| アイスクリーム
|
整形済のプログラムリストの挿入
nowikiを使う
environ
vocabularies NUMBERS, REAL_1, FINSEQ_1, VALUED_0, XBOOLE_0, NEWTON, ARYTM_3,
RELAT_1, NAT_1, XXREAL_0, ARYTM_1, SUBSET_1, CARD_1, CARD_3, ORDINAL4,
TARSKI, INT_2, FUNCT_1, FINSEQ_2, PRE_POLY, PBOOLE, FINSET_1, XCMPLX_0,
UPROOTS, FUNCT_2, BINOP_2, SETWISEO, INT_1, FUNCOP_1, NAT_3, XREAL_0;
notations TARSKI, XBOOLE_0, SUBSET_1, FINSET_1, ORDINAL1, CARD_1, NUMBERS,
XCMPLX_0, XXREAL_0, XREAL_0, REAL_1, NAT_D, INT_2, RELAT_1, FUNCT_1,
FUNCT_2, FINSEQ_1, FINSEQ_2, VALUED_0, PBOOLE, RVSUM_1, NEWTON, WSIERP_1,
TREES_4, BINOP_2, FUNCOP_1, XXREAL_2, SETWOP_2, PRE_POLY;
constructors BINOP_1, SETWISEO, NAT_D, FINSEQOP, FINSOP_1, NEWTON, WSIERP_1,
BINOP_2, XXREAL_2, RELSET_1, PRE_POLY, REAL_1,CARD_1;
registrations XBOOLE_0, RELAT_1, FUNCT_1, FINSET_1, NUMBERS, XCMPLX_0,
XXREAL_0, NAT_1, INT_1, BINOP_2, MEMBERED, NEWTON, VALUED_0, FINSEQ_1,
XXREAL_2, CARD_1, FUNCT_2, RELSET_1, ZFMISC_1, FINSEQ_2, PRE_POLY,
XREAL_0, RVSUM_1;
requirements NUMERALS, SUBSET, ARITHM, REAL, BOOLE;
definitions TARSKI, XBOOLE_0, INT_2, NAT_D, FINSEQ_1, VALUED_0,
PRE_POLY,FINSET_1,CARD_1;
theorems ORDINAL1, NEWTON, NAT_1, XCMPLX_1, INT_1, CARD_4, XREAL_0, RVSUM_1,
INT_2, PEPIN, FUNCT_1, CARD_2, PREPOWER, FINSEQ_1, TARSKI, XBOOLE_1,
FUNCOP_1, WSIERP_1, XBOOLE_0, FINSEQ_2, FINSEQ_3, FINSEQ_4, RELAT_1,
FINSOP_1, FUNCT_2, XREAL_1, XXREAL_0, NAT_D, VALUED_0, XXREAL_2,
FINSET_1,PARTFUN1, PRE_POLY, CARD_1;
schemes NAT_1, PRE_CIRC, FINSEQ_1, FINSEQ_2, PBOOLE, CLASSES1;
begin
now
let
Humankind be finite set,
Tokyoite be Subset of Humankind,
Numberofhair be Function of Tokyoite,NAT ;
assume LM1:
card (Tokyoite) = 12*10|^6;
assume LM2:
for x be object
st x in Tokyoite
holds Numberofhair.x <= 10|^6;
LM0:
10|^6 + 1 < 12*10|^6
proof
0 < 10|^6 by PREPOWER:6;
then
P2: 1*10|^6 < 11* 10|^6 by XREAL_1:68;
P3: 1 < 10 & 2 <= 6;
then
10 < 10 |^6 by PREPOWER:13;
then
1 < 10 |^6 by XXREAL_0:2,P3;
then
1 < 11*10|^6 by P2,XXREAL_0:2;
then
P4: 1*10|^6 + 1 < 1*10|^6 + 11*10|^6 by XREAL_1:8;
1*10|^6 + 11*10|^6 = (1+11)*10|^6 ;
hence thesis by P4;
end;
LM3:
card (rng Numberofhair) <= 10|^6+1
proof
now let y be object ;
assume
y in rng Numberofhair;
then
consider x be object
such that
A1: x in Tokyoite & y=Numberofhair.x by FUNCT_2:11;
Numberofhair.x <= 10|^6 by A1,LM2;
then
Numberofhair.x < 10|^6+1 by NAT_1:16,XXREAL_0:2;
then
Numberofhair.x in Segm (10|^6+1) by NAT_1:44,A1;
hence
y in Segm (10|^6+1) by A1;
end;
then
A2: rng Numberofhair
c= Segm (10|^6+1) by TARSKI:def 3;
then
card rng Numberofhair <= card Segm (10|^6+1) by NAT_1:43;
then
card rng Numberofhair <= card (10|^6+1) by ORDINAL1:def 17;
hence
card rng Numberofhair <= (10|^6+1) ;
end;
LM4:
card (rng (Numberofhair))
< card (Tokyoite)
proof
reconsider N1= card (rng (Numberofhair))
as Element of NAT ;
reconsider N2= card (Tokyoite)
as Element of NAT ;
A1: N1<=(10|^6+1) & N2=12*10|^6 by LM1,LM3;
then
N1 < N2 by A1,XXREAL_0:2,LM0;
hence thesis ;
end;
EX:
ex x,y be object
st x in Tokyoite
& y in Tokyoite
& x <> y
& Numberofhair.x = Numberofhair.y
proof
assume
A1:
not
( ex x,y be object
st x in Tokyoite
& y in Tokyoite
& x <> y
& Numberofhair.x = Numberofhair.y ) ;
then
A2: for x,y be object
st x in Tokyoite
& y in Tokyoite
& x <> y
holds
Numberofhair.x <> Numberofhair.y ;
A3: dom Numberofhair = Tokyoite by FUNCT_2:def 1;
then
for x,y be object st x in dom Numberofhair
& y in dom Numberofhair
& Numberofhair.x = Numberofhair.y
holds x = y by A2;
then
Numberofhair is one-to-one by FUNCT_1:def 4;
then
card (dom Numberofhair) = card (rng Numberofhair)
by CARD_1:70;
then
card (Tokyoite) = card (rng (Numberofhair))
by A3;
hence contradiction by LM4;
end;
end;
preタグを使う
ここにマークアップを無効にするテキストを入力します
::---------------------------------------
:: Combined Circuit Structure of STC_TYPE0_Inter_Inter.
definition
let x1,x2,x3,x5,x6,x7 be set;
func STC0IIStr(x1,x2,x3,x5,x6,x7) ->
unsplit gate`1=arity gate`2isBoolean
non void strict non empty ManySortedSign
equals
:: WALLACE1:def 1
BitGFA0Str(x1,x2,x3) +* BitGFA0Str(x5,x6,x7);
end;
別ウインドウでハイパーリンク先を表示