物理/速度・加速度・ベクトル

提供: Internet Web School

UNIQf0854d4c3d9287-MathJax-2-QINU2 による版

物理 >第2章  力学(1) 速度、加速度とベクトル 作成中[#ed3d436d]

目次

(1) 力学(ニュートン力学あるいは古典力学)とは何か(What is classical mechanics?)。

物体の運動の基本法則を明らかにする、物理学の一分野です。
この理論の根幹は、力の法則(3章)と力と運動の関係を与える運動法則(4章)です。
次の解説も参考にして下さい。

無料で公開された力学にかんする高校程度の教科書には下記のものがあるがまだ未完成である。


(2) 質点の運動の表し方 

高校では主に質点(大きさがなく重さだけがある点状の物体)の運動を学び、 
その法則を明らかにします。

なぜ質点の運動から、学ぶのか

大きさのある物体では、物体の箇所によって位置がことなり、また変形なども起こるため,
位置を表すのが難しいです。
さらに運動も平行移動だけでなく回転などを行い複雑となります。
質点は、大きさのない点なので位置は明確で、変形も回転もない。
しかし、重さがあって大きさのない、仮想の物質である質点の運動法則など何の役にも立たないと思う人もいるでしょう。
ところが、応用範囲は結構広いのです。
例えば、地球の公転運動(太陽の周りの回転)は、地球を質点とみなして解析してもほぼ正しいです。
さらに、大きさを考慮して解析しなければならない物体の運動も、質点の運動法則を利用して解明できます。
これには高校数学より高度な数学を必要とするため、大学で学びます。

質点の運動を数式で表すにはどうするか?

1章の4節で紹介したように近代の力学は、
運動を質点の位置の時間変化と考え、質点の位置や速度を正確に測定し、それらの変化の法則を明らかにして、数式で正確にあらわすという方法で発展した。
まず、時間と距離の測り方から紹介する。

時間と距離

我々が住む世界は、3次元空間 であり、縦、横、高さという3つの方向がある。この空間には距離という概念がある。
距離は、距離の原器を使って正確に測れる。
この空間の適当な点(原点と呼ぶ)を定め、この点をとおる、縦と横と高さ方向の直交する3つの直線を引く。各直線上の点に、原点からの距離を振りつけると座標軸が得られる。
さらに我々のすむ世界には時間という時の経過が存在する。
時間は時計で正確に測れる。


距離(あるいは長さ)については、 ウィキペディア(距離)
座標軸については、ウィキペディア(座標軸)
時間についてはウィキペディア(時間) の4.1 ニュートン力学での時間
をみてください。

質点の位置、および変位の表し方 

位置ベクトル

適当に原点$O$を定めておく。質点$P$の位置は、「原点$O$を始点とし、この質点を終点とするベクトル $\vec{OP}」$で、表示することができる。 $\vec{OP} $を質点 $P$の位置ベクトルと呼ぶ。
これは始点を原点に固定して考えるので、数学で習うベクトルと違う。
数学で通常ベクトルといえば、始点が違っていても、向きと大きさが等しいものは、始点の違いを無視して同じものとみなす。
このようなベクトルを自由ベクトル或いは単にベクトルと言う。
他方、始点を固定したベクトルは、それを明示したいときは、束縛ベクトルと呼ぶ。
物理学では、束縛ベクトルを利用することが多い。
束縛ベクトルの場合、+や-の演算のできないベクトルがあるので、それを考えて利用しなければならない。 
例えば、力は束縛ベクトルであり、通常、ベクトルとしての和は同じ始点をもつ場合にだけ有効である。

変位ベクトル

質点が位置を$P_1 $ から $P_2 $ に移動したとき、その変位を始点 $P_1 $, 終点$P_2 $のベクトル $\vec{P_1 P_2} $で表し、変位ベクトルという。
始点がどこであっても、変化後の質点をみたとき方向と距離が同じならば、変位としては同じなので、始点の違いは無視して、同じベクトルとみなす。
故に $\vec{P_1 P_2} $は自由ベクトルである。

ある質点の位置ベクトルを$\vec{OP} $とする。この質点を点Qまで動かすと変位ベクトルは$\vec{PQ} $である。
$\vec{OP}+\vec{PQ}=\vec{OQ}$(ベクトル和)は移動後の質点の位置ベクトルになっている。
このように、ベクトル演算を用いると、質点の位置を求めることができる。
ベクトルについて、詳しくない方は次の文献をご覧ください。 ウィキブックス(高等学校数学B ベクトル):http://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6B

ベクトルの座標表示

具体的に位置や変位を計算するには、位置ベクトルや変位ベクトルを実数を使って表し、数の計算を用いなければならない。
そのためベクトルを平行移動して、その始点を原点に移し、その時のベクトルの終点の座標成分を求めて座標表示する(いくつかの実数値の組が得られる)。
位置ベクトルは元々始点が原点なので、移動しなくてよい。
運動の種類に応じて、解析しやすいように色々な座標系が考案されている。
良く使われる座標系は直交座標系と極座標系である。
座標系と座標表示については下記を参照のこと。
ウィキペディア(座標):http://ja.wikipedia.org/wiki/%E5%BA%A7%E6%A8%99
ウィキペディア(極座標系):https://ja.wikipedia.org/wiki/%E6%A5%B5%E5%BA%A7%E6%A8%99%E7%B3%BB
(注)座標系をつかい、数字の計算で図形等の性質を調べることは16世紀にデカルト:http://ja.wikipedia.org/wiki/%E3%83%AB%E3%83%8D%E3%83%BB%E3%83%87%E3%82%AB%E3%83%AB%E3%83%88が見つけた偉大な方法である。

質点の位置ベクトルの時間関数表示

質点の時刻$t$の位置を位置ベクトル$\vec{r(t)} $であらわす。
必要に応じて、適切な座標系を用いて座標表示する。例えば直交座標系xyzでは、$(x(t),y(t),z(t)) $とあらわす。
運動が分かっているときは、$\vec{r(t)} $や$x(t)$,$y(t)$,$z(t))$の具体的形を定められる。
運動が未知で、運動方程式を解いて求めねばならない時は、未知関数$x(t)$,$y(t)$,$z(t))$を変数とする運動方程式をといて、$x(t)$,$y(t)$,$z(t))$を具体的に求めることができる。

質点の速度と加速度

空間に原点を決め、質点の位置Pを時間の関数として$\vec{OP}=\vec{r(t)} $と表わせば、質点の動き方がわかるので、その速度や加速度(速度の増加の仕方)も計算できる。
位置ベクトルは必要ならば座標系を定め座標表示しておく。
例えば、xyz直交座標系ならば、$\vec{OP}=(x(t),y(t),z(t))$,
極座標系:https://ja.wikipedia.org/wiki/%E6%A5%B5%E5%BA%A7%E6%A8%99%E7%B3%BBならば$\vec{OP}=(r(t),\theta(t),\phi(t))$という形で表せる。

速度 

質点の速度は、質点の位置が単位時間あたり幾ら変化するかを表わす。向きと大きさをもつのでベクトルである。
しかし2つの速度のベクトル和は、限定されたときしか意味を持たない。物理的に良く考えて、ベクトル和を用いて良いか、判断する必要がある。

平均速度

任意の時刻$t$における質点の位置が$\vec{r(t)} $で表される時、 
時刻tから時刻s(>t)の間の平均の速度は、 $(\vec{r(s)}- \vec{r(t)})/(s-t)$ で定義する。平均速度はベクトルである。 
ベクトル$\vec{r(t)} $ を直交座標系xyz:http://ja.wikipedia.org/wiki/%E7%9B%B4%E4%BA%A4%E5%BA%A7%E6%A8%99%E7%B3%BBにかんして座標表示し、$(x(t),\,y(t),\,z(t)) $ と表すと、
上記の平均の速度は、$(x(s)-x(t))/(s-t),\,(y(s)-y(t))/(s-t),\,(z(s)-z(t))/(s-t)) $  となる。

瞬間速度、略して速度とベクトル値関数の微分

落下する物体は時々刻々速さを増し、一定の速さに留まることはない。
そのような運動の速度を正確にとらえようとして、ガリレオは、平均速度をとる時間間隔s-tを無限に小さくした時の、平均速度を考えた(微分学の始まり)。
これを瞬間速度という。物理学では、単に速度と言えば、瞬間速度のことをいう。
高校の数学で学ぶ微分を、ベクトルに値をとる関数に拡張すると、時刻$t$の速度$\vec{v(t)} $は、
$\frac{d\vec{r(t)}}{dt}=\lim_{s \to t}(\vec{r(s)}- \vec{r(t)})/(s-t)$
で表せる。
ベクトル$\vec{v(t)} $ を直交座標xyz表示すると、上記の速度は、
$\vec{v(t)}=\lim_{s \to t}(\vec{r(s)}- \vec{r(t)})/(s-t)$
$= \lim_{s \to t}(x(s)-x(t))/(s-t),\,(y(s)-y(t))/(s-t),\,(z(s)-z(t))/(s-t))$ 
$=(\lim_{s \to t}(x(s)-x(t))/(s-t),\,\lim_{s \to t}(y(s)-y(t))/(s-t),\,\lim_{s \to t}(z(s)-z(t))/(s-t))$
$=(\frac{dx(t)}{dt},\,\frac{dy(t)}{dt},\,\frac{dz(t)}{dt}) $
と表せる。
速度については、下記の記事も参考のこと。
ウィキペディア(速度):http://ja.wikipedia.org/wiki/%E9%80%9F%E5%BA%A6

等速円運動の速度

質点が$xy$ 平面上の原点 O を中心とする半径 $r$の円上を等速$v$で運動するとする。
質点の角速度$\omega$は、$\omega=v/r$(ラジアン/単位時間)である。
時刻$t$の質点の位置ベクトル$\vec{r(t)} $の$x,y$座標を$(x(t),\ y(t))$、極座標を(r、$\theta(t))$と書くと、
$x(t)=r\cos(\theta(t)),\qquad y(t)=r\sin(\theta(t))$
$\theta(t)=\omega t + \theta_0$
 ここで$ \theta_0$ は、時刻0における質点の位相角である。
これらを時間tで微分すると、速度のx成分とy成分
$\dot{x(t)}=-r\sin(\theta(t))\dot{\theta(t)}$
$\dot{y(t)}=r\cos(\theta(t))\dot{\theta(t)}$
が得られる。
但し、$\dot{x(t)}$ は、関数$x(t)$ を時間変数$t$で微分したことを意味する記法で、
$\dot{x(t)}=\frac{dx(t)}{dt}$ ということである。
$\dot{\theta(t)}=\omega $なので 
速度ベクトルは$\vec{v(t)}=(\dot{x(t)},\dot{y(t)})=(-r\sin(\theta(t))\omega ,r\cos(\theta(t))\omega)$,
このベクトルは、質点の位置ベクトル$\vec{r(t)}=(x(t),y(t))=(r\cos(\theta(t)),r\sin(\theta(t)))$
と直交している。
何故なら、$\vec{r(t)}$の傾きは$\tan(\theta(t))$、$\vec{v(t)}$の傾きは$-\frac{1}{\tan(\theta(t))}$なので、傾きの積が-1となるからである。
関連事項については次の記事を参照のこと。
ウィキペディア(円運動):http://ja.wikipedia.org/wiki/%E5%86%86%E9%81%8B%E5%8B%95

加速度

質点の加速度は、速度が単位時間あたり幾ら変化するかを表わす、向きと大きさをもつベクトルである。   
速度と同じように平均加速度と瞬間加速度が考えられるが、単に加速度といえば瞬間加速度のことである。

平均加速度

任意の時刻tにおける質点の速度が$\vec{v(t)}= \dot{\vec{r(t)}}$で表される時、
時刻tから時刻s(>t)の間の平均の加速度は、
$(\vec{v(s)}- \vec{v(t)})/(s-t)=(\dot{\vec{r(s)}}- \dot{\vec{r(t)}})/(s-t)$
で定義する。平均加速度はベクトルである。

瞬間加速度、略して加速度

落下する物体は、速度をますが、その増し方も絶えず増加する。
そのような運動の速度の増加の仕方を正確にとらえるためには、平均加速度をとる時間間隔s-tを無限に小さくした時の、平均加速度を考える必要がある。
これを瞬間加速度というが、物理学では、単に加速度と言えば、瞬間加速度のことをいう。
数式を用いると、時刻tの加速度$\vec{\alpha(t)} $は、
$\vec{\alpha(t)}=d\vec{v(t)}/{dt}$
$\vec{v(t)}= d\vec{r(t)}/dt$なので、
$\vec{\alpha(t)}=d^2\vec{r(t)}/dt^2$ と書ける。 加速度については、下記の記事も参照のこと。
ウィキペディア(加速度):http://ja.wikipedia.org/wiki/%E5%8A%A0%E9%80%9F%E5%BA%A6

等速円運動の加速度

質点が xy 平面上で原点 O を中心とする半径 r の円上を等速で運動するとき、加速度はどうなるか?
速度ベクトルは$\vec{v(t)}=(\dot{x(t)},\dot{y(t)})=(-r\sin(\theta(t))\omega ,r\cos(\theta(t))\omega)$ であった。すると加速度は$\vec{\alpha(t)}=\frac{d\vec{v(t)}}{dt}=-r\omega^2(\cos(\theta(t)),\sin(\theta(t)))=\frac{v^2}{r}(-\frac{\vec{r(t)}}{r})$ となる。すなわち大きさが$\frac{v^2}{r}$で向きは、質点の位置から運動の中心である原点Oに向いた、ベクトルである。
以下の記事も参考にしてください。
ウィキペディア(円運動):http://ja.wikipedia.org/wiki/%E5%86%86%E9%81%8B%E5%8B%95

時間、長さ、速度、加速度の単位

色々な単位系があるが、通常はSI国際単位系が用いられる。
この単位系では時間や長さ等、基本的なものを基本単位として定める。
その他の速度や加速度、力等の単位は、それぞれの定義や物理法則を利用して、基本単位を用いて組み立てる。SI組み立て単位と呼ばれる。

例えば、速度の定義は、
$\vec{v(t)}=\frac{d\vec{r(t)}}{dt}=\lim_{s \to t}(\vec{r(s)}- \vec{r(t)})/(s-t)$
なので、速度の単位は距離の単位$m$(メートル)を時間の単位$s$(秒)で割った、$m/s$ である。
加速度の単位は、その定義が
$\vec{\alpha(t)}=d\vec{v(t)}/{dt}$
なので、$m/s^2$ である。


    • 問題 [#da5b2f2a]

+X(t)=4.9t^2(m), t:秒 のとき、~ ① t=1から t=1.1 までの間の平均速度、~ ② t=1から t=1.01 までの間の平均速度、~ ③ t=1から t=1.001 までの間の平均速度、~ ④ t=1の時の、瞬間速度~ は,それぞれ、いくらか(ここでt^nはtのn乗を表す)。 --①   ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ++解説 +X(t)=4.9t^2(m), t:秒 のとき、~ ① t=2から t=2.1 までの間の平均速度、~ ② t=2から t=2.01 までの間の平均速度、~ ③ t=2から t=2.001 までの間の平均速度、~ ④ t=2の時の、瞬間速度~ は,それぞれ、いくらか。 --①   ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ++解説 +X(t)=t^3(m), t:秒 のとき、~ ① t=-1から t=-0.9 までの間の平均速度、~ ② t=-1から t=-0.99 までの間の平均速度、~ ③ t=-1から t=-0.999 までの間の平均速度、~ ④ t=-1の時の、瞬間速度~ は,それぞれ、いくらか。 --①   ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ++解説 +2次元平面上を動く質点を考える。~ 時刻t(秒)の質点の座標が(X(t)、Y(t))=(t,-4.9t^2+t) で与えられるとする。~ この時~ ① t=1から t=1.1 までの間の平均速度、~ ② t=1から t=1.01 までの間の平均速度、~ ③ t=1から t=1.001 までの間の平均速度、~ ④ t=1の時の、瞬間速度~ は,それぞれ、いくらか。 --①   ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ++解説 +2次元平面上を動く質点を考える。~ 時刻t(秒)の質点の座標が(X(t)、Y(t))=(t,-4.9t^2+t) で与えられるとする。~ この時~ ① t=2から t=2.1 までの間の平均速度、~ ② t=2から t=2.01 までの間の平均速度、~ ③ t=2から t=2.001 までの間の平均速度、~ ④ t=2の時の、瞬間速度~ は,それぞれ、いくらか。 --①   ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ++解説 +X(t)=4.9t^2(m), t:秒 のとき、~ 時刻t(秒)の質点の速度v(t)を求めよ。 --9.8t(m/s) ---4.9t(m/s) ---4.9(m/s) ---4.9t^2(m/s) ++解説 +X(t)=t^3(m), t:秒 のとき、~ 時刻t(秒)の質点の速度v(t)を求めよ。 --3t^2(m/s) ---t^3(m/s) ---3t(m/s) ---t^2(m/s) ++解説 +時刻tの質点の速度がv(t)=g*t で与えられるとき~ ① t=1から t=1.1 までの間の平均の加速度、~ ② t=1から t=1.01 までの間の平均の加速度、~ ③ t=1から t=1.001 までの間の平均の加速度、~ ④ t=1の時の、瞬間の加速度~ は,それぞれ、いくらか。 --①   ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ++解説 +2次元平面上を動く質点を考える。~ 時刻t(秒)の質点の速度がv(t)=(2,-9.8t+2) (m/s)で与えられるとする。~ この時~ ① t=-1から t=-0.9 までの間の平均加速度、~ ② t=-1から t=-0.99 までの間の平均加速度、~ ③ t=-1から t=-0.999 までの間の平均加速度、~ ④ t=2の時の、瞬間加速度~ は,それぞれ、いくらか。 --①   ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ---①    ②    ③    ④ ++解説 +X(t)=t^3(m), t:秒 のとき、~ 時刻t(秒)の質点の加速度a(t)を求めよ。 --6t(m/s^2) ---3t(m/s^2) ---t(m/s^2) ---3t^2(m/s^2) ---3t(m/s^2) ++解説 +静水に対して2m/sで進む船を考える。川の流れは3m/sとする。このとき、~ ① 川の流れに平行に上流に船を進めたとき、川岸に対する船の速度~ ② 川の流れに平行に下流に船を進めたとき、川岸に対する船の速度~ は、いくらか。 --① 川下に向けて1(m/s) ② 川下に向けて5(m/s) ---① 川上に向けて1(m/s) ② 川下に向けて5(m/s) ---① 川下に向けて5(m/s) ② 川下に向けて1(m/s) ---① 川上に向けて1(m/s) ② 川上に向けて5(m/s) ---① 川上に向けて5(m/s) ② 川下に向けて5(m/s) ++解説 +静水に対して2m/sで進む船を考える。川の流れは2m/sとする。~ 船を対岸に向けて、川の流れに直角に向けて進める。~ このとき,船の、川岸から見た速度はいくらか。 -- --- --- --- --- ++解説







    • mimeTeX [#i567b9af]

[[mim

個人用ツール