物理/光と光波への補足
提供: Internet Web School
目次 |
「4.3 光と光波」への補足
この節では、テキスト「4.3 光と光波」で、省略した2つの事柄について説明する。
一般の場合における光の反射と屈折時の位相変化
レンズの公式の証明
「4.3 光と光波」で説明したように、今後の解析においては、次の4つの約束事を仮定する。
(1)レンズの軸を水平になるように書く(x軸にとる)。
(2)物体(光源)とレンズ面との距離 UNIQ7d2ee9db13329dc1-MathJax-30-QINU は、物体がレンズの左側にある時、正とする。
(3)像のレンズとの距離 UNIQ7d2ee9db13329dc1-MathJax-31-QINU は、像がレンズの右側(光線の進行方向)にあるとき、正とする。
負のときは、レンズの左側、光源のある側に見える虚像を表す。
(4)球の表面の曲率半径 r とは、球の半径Rに正負の符号をつけたもの。
球の中心が表面の右側にある時、正に定め(r=R)、
球の中心が表面の左側にある時、負に定める(r= - R)。
☆☆球面が一つの特殊レンズ
単レンズは屈折面を二つ持ち複雑なので、
最初に屈折面が一つの球面であるレンズから解析する。
境界面により2つに分けられる片方の空間は媒質1で満たされ、光源がおかれる。他方の側はレンズを構成する透明な媒質で満たされる。
このレンズでは、実像はレンズ内にできる。
屈折面が一つなので、スネルの法則を用いて、近軸光線による
像の位置が容易に計算できる。
次の項で、このレンズを2枚組合わせて、通常の単レンズの解析ができることを示す。
従って、この単純な解析がレンズの解析で、
決定的役割を果たすことが分かる。
図参照。
レンズ面の球の中心をC、半径をRとし、
レンズの軸と屈折面との交点をO'とする。
さらに光源側の媒質1での光速を UNIQ7d2ee9db13329dc1-MathJax-32-QINU ,レンズ内の媒質2の光速を、 UNIQ7d2ee9db13329dc1-MathJax-33-QINU とする。
命題1
(1)光源とレンズ面との距離 UNIQ7d2ee9db13329dc1-MathJax-34-QINU と、
近軸光線による光源の像とレンズ面の距離 UNIQ7d2ee9db13329dc1-MathJax-35-QINU の間には,
次の関係がある。
UNIQ7d2ee9db13329dc1-MathJax-36-QINU
ここで、UNIQ7d2ee9db13329dc1-MathJax-37-QINU とする。
(2)光源からの近軸光線が、レンズ内(レンズ面の正側)の軸上の点 UNIQ7d2ee9db13329dc1-MathJax-38-QINU に向かう場合には、
UNIQ7d2ee9db13329dc1-MathJax-39-QINU とレンズ面との距離に負の符号をつけたものを、 UNIQ7d2ee9db13329dc1-MathJax-40-QINU とおけば、
式(a) が成り立つ。
証明
☆☆ 一般の球面単レンズ
レンズの左側の面(光源側の面)に、命題1を適用すると、
点光源からの近軸光線の束がレンズ左面で屈折後、光軸上のどの点に向かう光線束になるかが分かる。
すると、レンズの右面による屈折で、光軸上のどの点に向かうかは、
再度命題1の後半の命題を適用すると求まる。
レンズの厚みによる誤差が無視できる場合には
次の、球面単レンズの基本公式が得られる。
命題2(球面単レンズの基本公式)
レンズの厚みが小さく、厚さによる誤差が無視できるほど小さいときには、
レンズは次の諸性質を持つ。
(1)光軸上の点光源から出た、光軸に近いあらゆる光線(近軸光線)は、
(球面)レンズで屈折し、レンズの光軸のある点に、ほぼ集まり、像を作るか、発散して虚像を作る。
光源とそれぞれの光線のレンズ面までの距離を UNIQ7d2ee9db13329dc1-MathJax-41-QINU 、
レンズ面から像までの距離 UNIQ7d2ee9db13329dc1-MathJax-42-QINU との間には、
UNIQ7d2ee9db13329dc1-MathJax-43-QINU
という関係が成立つ。
UNIQ7d2ee9db13329dc1-MathJax-44-QINU ここでfはレンズの焦点距離という。
(2)レンズの焦点距離fは、
レンズの屈折率n(=空中の光速/レンズ中の光速)、
レンズの左面(光源に面した面)の曲率半径 UNIQ7d2ee9db13329dc1-MathJax-45-QINUと
レンズの右面(光源と反対側の面)の曲率半径 UNIQ7d2ee9db13329dc1-MathJax-46-QINU を用いて
UNIQ7d2ee9db13329dc1-MathJax-47-QINU
で表せる。
証明;
証明終わり
命題2の系;
(1)光軸に近い点光源UNIQ7d2ee9db13329dc1-MathJax-48-QINUから出る近軸光束はレンズで屈折後、
すべて、ある一点に集まり実像UNIQ7d2ee9db13329dc1-MathJax-49-QINU を作るか、
あるいは屈折後に発散し、その光線束を逆に延長すると、ある一点に集まり虚像UNIQ7d2ee9db13329dc1-MathJax-50-QINUを作る。
(2)光源UNIQ7d2ee9db13329dc1-MathJax-51-QINUから光軸におろした垂線の足をUNIQ7d2ee9db13329dc1-MathJax-52-QINU、像UNIQ7d2ee9db13329dc1-MathJax-53-QINUから光軸に下した垂線の足をUNIQ7d2ee9db13329dc1-MathJax-54-QINU とする。
するとUNIQ7d2ee9db13329dc1-MathJax-55-QINUに点光源をおくと、ここから出る近軸光線束は、レンズで屈折後、点UNIQ7d2ee9db13329dc1-MathJax-56-QINU に像を作る。