物理/静電気と静電場(その2)

提供: Internet Web School

UNIQ3256e0e55414ba8c-MathJax-2-QINU2 による版
(差分) ←前の版 | 最新版 (差分) | 次の版→ (差分)

目次

「 静電気と静電場(その2) 静電誘導 」

静電界中の導体と静電誘導

導体に、静電界をかけると、導体内部にもこの電界が及び、導体内部の自由電子はこの電界から力を受けて移動し始める。導体の片側(電気力線の下流側)は正、その反対側は負に、帯電していき、その電荷により、外部電界を打ち消す方向の電界が発生する。この電界と外部電界の和が導体内部の電界となる。この導体内部の電界により、自由電子は力を受けて動き続けて、短時間のうちに、導体の帯電が増え、導体内部の電界は零になる。これを静電誘導という。導体の内部電界が零になると電子の移動はなくなる。詳しくは

静電遮蔽

静電界の中に置かれた、導体の箱の中の空間には、電荷が存在しない限り、電界は存在せず、電位は一定である。このように導体の箱の内部は、外部の静電界から遮蔽されている。   
問い。何故か、考察せよ。   
ヒント: 背理法で証明する。もし、箱の内部の電位が一定でないとすると、「電位は、ある内部の点pで最大値をとり、その値は導体箱の電位(一定)より大きい」か、 「ある内部の点p’で最小値をとり、その値は導体箱の電位より小さい」。前者では、p点を含む小さな立体を考えると、それを内から外へ貫く電気力線の数は正となり、ガウスの法則に反する。後者でも同様。

コンデンサー

コンデンサーは電気を蓄える道具である。

コンデンサーに蓄えられる電気量Qと電圧Vの関係

重ね合わせの原理から、コンデンサーの極板の帯電量UNIQ7844dbe625f4e022-MathJax-159-QINUと、この電荷の作る電界は 正比例する。電界と電圧も正比例するので、帯電量Qは、極板間の電圧Vに正比例する。
UNIQ7844dbe625f4e022-MathJax-160-QINU
Cはコンデンサーの電気容量と呼ばれる。その単位は,上の式を用いて決められ、ファラッド[]と呼ばれる。UNIQ7844dbe625f4e022-MathJax-161-QINU で、電位Vの単位はボルトUNIQ7844dbe625f4e022-MathJax-162-QINU、電荷Qの単位はクーロンUNIQ7844dbe625f4e022-MathJax-163-QINUを用いて、UNIQ7844dbe625f4e022-MathJax-164-QINUと定める。UNIQ7844dbe625f4e022-MathJax-165-QINU([N]は力の単位、ニュートン)なのでUNIQ7844dbe625f4e022-MathJax-166-QINUとも書ける。

平行板コンデンサーの場合には、極板の面積をS,極板間の距離をdとすると、
UNIQ7844dbe625f4e022-MathJax-167-QINU
ここで、UNIQ7844dbe625f4e022-MathJax-168-QINU[F/m] は真空の誘電率, [F/m]=UNIQ7844dbe625f4e022-MathJax-169-QINU 。 この電気容量の式は、UNIQ7844dbe625f4e022-MathJax-170-QINUの両辺にUNIQ7844dbe625f4e022-MathJax-171-QINUをかけた式UNIQ7844dbe625f4e022-MathJax-172-QINUに、UNIQ7844dbe625f4e022-MathJax-173-QINUを代入して得られる式 UNIQ7844dbe625f4e022-MathJax-174-QINU に UNIQ7844dbe625f4e022-MathJax-175-QINU を代入し、Cについて整頓して得られる。

たくわえられるエネルギー

コンデンサーに電荷UNIQ7844dbe625f4e022-MathJax-176-QINUを蓄えるのに必要なエネルギーEは、UNIQ7844dbe625f4e022-MathJax-177-QINU である。 ここで、UNIQ7844dbe625f4e022-MathJax-178-QINUは、UNIQ7844dbe625f4e022-MathJax-179-QINUを満たす値。
その理由:横軸にQ,縦軸にVをとり、UNIQ7844dbe625f4e022-MathJax-180-QINU のグラフ(直線)を書く。電荷q をUNIQ7844dbe625f4e022-MathJax-181-QINU とし、UNIQ7844dbe625f4e022-MathJax-182-QINUを非常に小さい値とする。電荷量をUNIQ7844dbe625f4e022-MathJax-183-QINUからUNIQ7844dbe625f4e022-MathJax-184-QINUまで増やすのに必要なエネルギーを求めよう。
増加する電荷dqは微小なのでこの間、極板間の電圧UNIQ7844dbe625f4e022-MathJax-185-QINUは殆ど増加しない。そこで、この時必要なエネルギーはUNIQ7844dbe625f4e022-MathJax-186-QINU と考えられる。(下記の注を参照のこと)
UNIQ7844dbe625f4e022-MathJax-187-QINU のグラフでいえば、これは、Q軸と直交する2本の直線UNIQ7844dbe625f4e022-MathJax-188-QINU と直線UNIQ7844dbe625f4e022-MathJax-189-QINU(Q軸)、直線UNIQ7844dbe625f4e022-MathJax-190-QINU で囲まれた領域の面積にほぼ等しい。 全エネルギーEは、UNIQ7844dbe625f4e022-MathJax-191-QINU で UNIQ7844dbe625f4e022-MathJax-192-QINUを求め始め、UNIQ7844dbe625f4e022-MathJax-193-QINU 、 UNIQ7844dbe625f4e022-MathJax-194-QINU 、、、、と増やしてUNIQ7844dbe625f4e022-MathJax-195-QINU までのUNIQ7844dbe625f4e022-MathJax-196-QINUを求め。加え合わせればよい。故にE は、Q軸と直交する直線UNIQ7844dbe625f4e022-MathJax-197-QINU ,直線UNIQ7844dbe625f4e022-MathJax-198-QINUとQ軸によって囲まれる3角形の面積になる。故にUNIQ7844dbe625f4e022-MathJax-199-QINU (終わり)
(注)数学が強い方は積分計算で簡単にEを求められる。 UNIQ7844dbe625f4e022-MathJax-200-QINU

電界中の不導体と誘電分極 

不導体は、自由電子をもたないので電界のなかにおいても何の変化も起こさないように思える。しかし、 ファラデーは、コンデンサーの極板間に不導体をいれると、その容量が増すことを発見した。

ファラデーの発見した経験則と比誘電率 

コンデンサーの極板間の距離を UNIQ7844dbe625f4e022-MathJax-201-QINU、極板面積をUNIQ7844dbe625f4e022-MathJax-202-QINUと置く。 厚さUNIQ7844dbe625f4e022-MathJax-203-QINU、上底と下底の面積がUNIQ7844dbe625f4e022-MathJax-204-QINUの不導体の板でコンデンサー極板間を隙間なく満たすと、コンデンサーの容量UNIQ7844dbe625f4e022-MathJax-205-QINU はUNIQ7844dbe625f4e022-MathJax-206-QINU倍に増える。 UNIQ7844dbe625f4e022-MathJax-207-QINU。 ここで、UNIQ7844dbe625f4e022-MathJax-208-QINUは比誘電率といい、1以上の、誘電体に固有な値。

UNIQ7844dbe625f4e022-MathJax-209-QINUを、この不導体の誘電率と呼び、UNIQ7844dbe625f4e022-MathJax-210-QINU で表す。  

極板間を完全には満たさない薄い不導体の板をいれても、その厚さに応じて、コンデンサーの容量は増加する。

不導体表面に電荷が誘導される

ファラデーの発見した経験則をもとに、不導体に何が起こるのかを考察しよう。 
(1) 帯電増加量
極板間に不導体が入っていない時、両極板の間に電圧Vをかけると、極板にはそれぞれUNIQ7844dbe625f4e022-MathJax-211-QINUの電荷が帯電する。
次に比誘電率UNIQ7844dbe625f4e022-MathJax-212-QINUで厚さUNIQ7844dbe625f4e022-MathJax-213-QINUの不導体をコンデンサー間に(隙間なく)挿入すると、両極板には、それぞれUNIQ7844dbe625f4e022-MathJax-214-QINUの電気が貯まる。
増加した帯電量は、UNIQ7844dbe625f4e022-MathJax-215-QINU 。


(2) 両極板の電荷のつくる電界の大きさ
極板間に不導体が入っていない時、電荷はUNIQ7844dbe625f4e022-MathJax-216-QINUなので、極板の表面電荷密度はUNIQ7844dbe625f4e022-MathJax-217-QINU。これが極板間につくる電界UNIQ7844dbe625f4e022-MathJax-218-QINUは、方向が正電極から負電極へむかう垂線の方向と一致し、大きさは、UNIQ7844dbe625f4e022-MathJax-219-QINU

不導体を挿入した場合、電荷はUNIQ7844dbe625f4e022-MathJax-220-QINUなので、極板の表面電荷密度はUNIQ7844dbe625f4e022-MathJax-221-QINU。これが極板間につくる電界UNIQ7844dbe625f4e022-MathJax-222-QINUは、方向が正電極から負電極へむかう垂線の方向と一致し、大きさは、UNIQ7844dbe625f4e022-MathJax-223-QINU

(3) 正極板がわの不導体の表面に負電荷が誘導され、その逆符号の電荷が負極板側の表面に誘導される
不導体を挿入したときも、極板電圧Vは変えていないので、厚さdの不導体の内部の電界の大きさは、UNIQ7844dbe625f4e022-MathJax-224-QINU となっているはずである。
もし不導体に何の変化もないならば、不導体内部の電界の大きさは(2)より、UNIQ7844dbe625f4e022-MathJax-225-QINU であり、内部電界がUNIQ7844dbe625f4e022-MathJax-226-QINU であることと矛盾する。
これより正極板に接する不導体の表面に、正極で増加した帯電量を相殺するUNIQ7844dbe625f4e022-MathJax-227-QINUの負電荷が誘導され、負極板に接する不導体の表面に、負極で減少した帯電量を相殺するUNIQ7844dbe625f4e022-MathJax-228-QINUの正電荷が誘導されることが類推できる。この時、極板とそれに接する不導体の表面に帯電する電荷は合計すると、UNIQ7844dbe625f4e022-MathJax-229-QINUとなり、この電荷がつくる電界の大きさはEとなり、極板間電圧はEd=Vでうまくいく。
なお、不導体の正負の表面電荷は、電界が掛かっている時だけ現れ、掛からなくなると消失する。正と負の電荷のあらわれた不導体の部分を切って、2つに分けても、それぞれに正負同量の表面電荷があらわれ、正の電荷や負の電荷を取り出すこともできない。このように電界のなかで不導体の表面に現れる電荷は、真の電荷ではない。次の節で説明するように誘電分極という現象よって誘導された電荷なので、分極電荷といい、不導体のことを誘電体とも呼ぶ。

(4)誘電体の内部の電界は外部から作用する電界と分極電荷の作る電界の和であること
不導体の表面に誘導された電荷UNIQ7844dbe625f4e022-MathJax-230-QINUは,ガウスの法則を利用した、今まで何回も使った論法により、 誘電体の内部に電界をつくり、その大きさは、UNIQ7844dbe625f4e022-MathJax-231-QINU、ここで UNIQ7844dbe625f4e022-MathJax-232-QINUは不導体の表面の分極電荷の面密度で、分極電荷密度あるいは分極の大きさという。電界の方向は、UNIQ7844dbe625f4e022-MathJax-233-QINUと逆向き。
故に、UNIQ7844dbe625f4e022-MathJax-234-QINUの大きさは、UNIQ7844dbe625f4e022-MathJax-235-QINUで、向きはUNIQ7844dbe625f4e022-MathJax-236-QINUの向きと等しい(UNIQ7844dbe625f4e022-MathJax-237-QINUの向きと同じ)。故に、UNIQ7844dbe625f4e022-MathJax-238-QINU

(5)誘電体に外部から作用する電界UNIQ7844dbe625f4e022-MathJax-239-QINU,分極の大きさUNIQ7844dbe625f4e022-MathJax-240-QINUと誘電体の内部の電界UNIQ7844dbe625f4e022-MathJax-241-QINUの関係
UNIQ7844dbe625f4e022-MathJax-242-QINU
上の式にUNIQ7844dbe625f4e022-MathJax-243-QINU を代入し、整頓すると、
UNIQ7844dbe625f4e022-MathJax-244-QINU;分極の大きさと誘電体の内部の電界の関係
UNIQ7844dbe625f4e022-MathJax-245-QINU;誘電体に外部から作用する電界と誘電体の内部の電界の関係  
UNIQ7844dbe625f4e022-MathJax-246-QINUにUNIQ7844dbe625f4e022-MathJax-247-QINU を代入し整頓すると、
UNIQ7844dbe625f4e022-MathJax-248-QINUあるいは UNIQ7844dbe625f4e022-MathJax-249-QINU;比誘電率UNIQ7844dbe625f4e022-MathJax-250-QINUの不導体を挿入したコンデンサーの電極電荷と不導体内部の電界の大きさの関係。

誘電分極 

では、何故コンデンサーの電極間に挿入された(電界のかかった)不導体の表面に、電荷が現れるのだろうか?  
電界が掛かると誘電体を作っている原子の中の電子達(負電荷-q)と原子核(正電荷;+q)は電界から互いに逆の力をうける。
不導体では(自由電子がなく)すべての電子は原子核と電気力で引き合っている(ばねで引き合っているかのように)。
このため電界の大きさに比例して上流側に電子が、下流側に原子核がづれて、電界からの力と電気力が釣り合ったところで止る。
づれた電子達の電荷総量UNIQ7844dbe625f4e022-MathJax-251-QINUの重心から原子核の重心へのベクトルを UNIQ7844dbe625f4e022-MathJax-252-QINUと置くと、
その向きは、多くの元素では、電界の向きと一致する。
誘電体の各原子は双極子モーメントUNIQ7844dbe625f4e022-MathJax-253-QINUを持つ、電気双極子になる。 
この現象を誘電分極(dielectric polarization)という。  
単位体積中の双極子モーメントの和を UNIQ7844dbe625f4e022-MathJax-254-QINU と書き、単位体積あたりの双極モーメントと呼ぶ。
不導体の単位体積中の原子数をNとすると、UNIQ7844dbe625f4e022-MathJax-255-QINU

誘電体の各原子が、向きの揃った電気双極子になると、
誘電体の表面にある原子の中でも、電子は電界UNIQ7844dbe625f4e022-MathJax-256-QINU と逆向きに、原子核はUNIQ7844dbe625f4e022-MathJax-257-QINU の方向に少しずれ、両者は距離UNIQ7844dbe625f4e022-MathJax-258-QINUだけずれるので、
電気力線の上流側の誘電体の表面には、負電荷が現れ、下流側(UNIQ7844dbe625f4e022-MathJax-259-QINU の方向)の誘電体表面には、正電荷が現れる。
誘電体の内部は、誘電体の外部から見る限り、正負の電荷が打ち消し合って、電気を持たないように見える。

この現象を巨視的にながめよう。
一つの原子は移動可能電荷UNIQ7844dbe625f4e022-MathJax-260-QINUをもち単位体積中にN個の原子があるので、不導体中には単位体積あたりUNIQ7844dbe625f4e022-MathJax-261-QINUの電荷が(流体のように)一様に分布している。
電界のかからないときは、正と負の電荷が、ぴったりかさなって、打ち消し合い帯電してないようにふるまうが、
電界がかかると負電荷は電界の上流側に全く形を変えないで少し移動し、正電荷は電界の下流方向に少し移動(負電荷からみると正電荷はUNIQ7844dbe625f4e022-MathJax-262-QINUだけ移動)し、
不導体のそれどれの表面に電荷があらわれる。
この議論から、分極電荷は表面から、いくらかの厚さをもった部分に現れることがわかったが、非常に薄いので、表面に分布する電荷のように扱える。

単位体積あたりの双極モーメントがUNIQ7844dbe625f4e022-MathJax-263-QINU の不導体の表面の分極電荷密度 

コンデンサーの例で、考える。
極板間に挿入された不導体に極板電荷のつくる電界が作用して不導体の原子が分極して、UNIQ7844dbe625f4e022-MathJax-264-QINUという双極モーメントを持つとする。
単位体積あたりの双極モーメントは、単位体積当たりの原子数をNとして、UNIQ7844dbe625f4e022-MathJax-265-QINUとなる。
導体の各表面のUNIQ7844dbe625f4e022-MathJax-266-QINU方向(多くの不導体ではUNIQ7844dbe625f4e022-MathJax-267-QINU方向に同じ)に長さUNIQ7844dbe625f4e022-MathJax-268-QINUの範囲にわたって電荷が誘導される。
正の極板に接する不導体の面は、UNIQ7844dbe625f4e022-MathJax-269-QINUと直交するので、深さUNIQ7844dbe625f4e022-MathJax-270-QINUまでの領域が負に帯電。

不導体の単位表面あたりの深さdまでの体積はUNIQ7844dbe625f4e022-MathJax-271-QINUなので、電荷密度-Nqをかけて、UNIQ7844dbe625f4e022-MathJax-272-QINUがこの浅い領域の誘導電荷量となる。
この電荷は、UNIQ7844dbe625f4e022-MathJax-273-QINUが小さいので、表面電荷密度とみなす。

同様に、負の極板に接する不導体の面では、UNIQ7844dbe625f4e022-MathJax-274-QINUが表面電荷密度。
他方、UNIQ7844dbe625f4e022-MathJax-275-QINUは電極に接する不導体表面に現れる誘導電荷密度を表したので、UNIQ7844dbe625f4e022-MathJax-276-QINU。
これが、単位体積あたりの双極モーメントがUNIQ7844dbe625f4e022-MathJax-277-QINU の不導体の表面の分極電荷密度である。 

次に一様な電界UNIQ7844dbe625f4e022-MathJax-278-QINUに、任意の方向に置かれた誘電体の単位体積あたりの双極モーメントがUNIQ7844dbe625f4e022-MathJax-279-QINUであるとき、誘電体の表面に現れる分極電荷を算出しよう。

誘電体の表面の単位長の外法線(表面に直交し、誘電体内部から外部に向かう、単位長さのベクトル)をUNIQ7844dbe625f4e022-MathJax-280-QINUと書くと、

その表面に現れる、分極電荷の面密度UNIQ7844dbe625f4e022-MathJax-281-QINU は、UNIQ7844dbe625f4e022-MathJax-282-QINU であることが導ける。

電束と電束密度

電荷Qの作る電界中に不導体があると、
電界の下流側と上流側の面にそれぞれ正、負同量の分極電荷が現れて、電荷Qの作る電界を弱める電界をつくり、
不導体中の電界は、両者の和になる。
このため、不導体中の電界は外部の電界より弱くなる。電気力線の本数は、電界の強さに比例するようにとりきめたので、不導体の中では本数は急減してしまう。
このため、電荷を内部に含む立体の表面の一部あるいは全部が不導体に含まれる場合、立体表面を貫く電気力線の本数はUNIQ7844dbe625f4e022-MathJax-283-QINUより少なくなってしまい、[ガウスの法則]は成り立たないように見える。
しかし、これは電界が分極電荷のつくる電界も加えたものなのに電荷は分極電荷をくわえてないためにおこった現象であり、
電荷として真の電荷だけでなく分極電荷も考慮すれば、ガウスの法則は成立する。
「立体を貫く電気力線の本数はUNIQ7844dbe625f4e022-MathJax-284-QINUとなる。
 ここでUNIQ7844dbe625f4e022-MathJax-285-QINUは、この立体に含まれる分極電荷の総量。しかしUNIQ7844dbe625f4e022-MathJax-286-QINUは測定も難しく、この方法は手間がかかる。
そこで電気力線に代わって不導体中でも量の変わらないものを考え、ガウスの法則をその量を使って記述することを考える。

 点電荷の電束と電束密度 

点電荷qがある時、そこから(実際には流れるものはないが)qに等しい流体のようなものが湧き出し、電気力線にそって色々な方向に流れると考える。
各方向への流量は、電界の強さに比例して配分されると考える。この流れを電束といい、その量を電束量と呼ぼう

真空中に置かれたqを中心とする半径rの球面S上での単位面積当たりの電束量を求めよう。
qという量の電束が点電荷から湧き出し、放射状の電界にそって流れ出し、球面Sを通り抜けるが、
この球面上では、電界の大きさは等しい(E=UNIQ7844dbe625f4e022-MathJax-287-QINU)ので、どの方向にも等しい密度で流れることがわかる。
そこで球面Sの単位面積当たりの電束量は、qをSの面積で割った、UNIQ7844dbe625f4e022-MathJax-288-QINUとなる。 これは、UNIQ7844dbe625f4e022-MathJax-289-QINUに等しい。

次に、電束の密度と方向を与える、電束密度ベクトル(通常は単に電束密度と呼ぶ)を次のように定める。
電荷qを原点とする位置ベクトルUNIQ7844dbe625f4e022-MathJax-290-QINUの点での電束密度UNIQ7844dbe625f4e022-MathJax-291-QINUとは、
ベクトルの方向は電気力線の向き(=電界の向き)、
その大きさは、その点をとおり、電気力線と直交する小平面UNIQ7844dbe625f4e022-MathJax-292-QINUをとり、そこを単位面積あたりとおり抜ける電束の量
で定義する。
UNIQ7844dbe625f4e022-MathJax-293-QINUは小さく、電気力線と直交するので、qを中心とする半径r=UNIQ7844dbe625f4e022-MathJax-294-QINUの球面にほぼ、のっているため、球面の一部と考えてよい。
前述の議論からここを通りぬける電束量は、単位面積当たり、UNIQ7844dbe625f4e022-MathJax-295-QINUである。
これは、UNIQ7844dbe625f4e022-MathJax-296-QINU が電束密度であることを示している。

真空中のガウスの法則は、Vを球や立方体などの立体、Sをその表面(=閉曲面)とすると、
UNIQ7844dbe625f4e022-MathJax-297-QINU の外法線成分のS全体での平均値×面Sの面積=q;qがVの内部のとき。   =0;qがVの外部のとき。
であった。
電束密度Dを用いて表現すると
UNIQ7844dbe625f4e022-MathJax-298-QINU の外法線成分のS全体での平均値×面Sの面積=q

 真空中の多数の点電荷の電束と電束密度 

点電荷の集まりである電荷Qの作る電界Eは、
重ね合わせの原理から、
それぞれの点電荷の作る電界UNIQ7844dbe625f4e022-MathJax-299-QINU のなので、
Eの作る電束も、UNIQ7844dbe625f4e022-MathJax-300-QINU の作る電束の和となり、
電束密度は、UNIQ7844dbe625f4e022-MathJax-301-QINU

 誘電体中の多数の点電荷の電束密度 

真空以外の不導体の媒質中の場合、不導体の原子が電荷の作る電界によって、多かれ少なかれ誘電分極して、かってに分極電荷を持ってしまうため、
ガウスの法則は、この電荷を考慮して、
UNIQ7844dbe625f4e022-MathJax-302-QINU の「Vの外法線」成分のS全体での平均値×面Sの面積= V内の電荷量Q+V内の分極電荷UNIQ7844dbe625f4e022-MathJax-303-QINU
としなければならない。
UNIQ7844dbe625f4e022-MathJax-304-QINUは測定も難しく、どこに発生するかも、分かりにくいので、これを扱いやすくしよう。
まず、分極ベクトル(単位体積あたりの双極モーメント)UNIQ7844dbe625f4e022-MathJax-305-QINU が分かる場合;
立体Vの内部に現れる分極電荷の総量は
UNIQ7844dbe625f4e022-MathJax-306-QINUの「Vの外法線」成分の、S上の平均値×Sの面積
となる。
何故なら
これを前述のガウスの法則の式に代入して、
UNIQ7844dbe625f4e022-MathJax-307-QINU の「Vの外法線」成分のS全体での平均値×面Sの面積=V内の電荷量Q
分極電荷UNIQ7844dbe625f4e022-MathJax-308-QINU を使わないで、ガウスの法則が記述できた。
しかし、UNIQ7844dbe625f4e022-MathJax-309-QINU も知ることは難しい。
多くの不導体では、、UNIQ7844dbe625f4e022-MathJax-310-QINU はUNIQ7844dbe625f4e022-MathJax-311-QINUと同じ向きになり、比誘電率UNIQ7844dbe625f4e022-MathJax-312-QINUの誘電体では、UNIQ7844dbe625f4e022-MathJax-313-QINU であった。
これを上式に代入すると、
UNIQ7844dbe625f4e022-MathJax-314-QINU の「Vの外法線」成分のS全体での平均値×面Sの面積=V内の電荷量Q
となる。

個人用ツール