Loading [MathJax]/jax/output/HTML-CSS/jax.js

物理/8章の付録

提供: Internet Web School

UNIQ3b7ca430529f3f-MathJax-2-QINU2 による版

目次

[非表示]

 8章の付録

 問の解答

 問

limn(1+1n)n が存在し、2より大きく3以下であることを証明する。
(1)準備; 2項定理;を用いた展開
an(1+1n)n(n) とおく。
すると、 2a1=1+11=2<a2=(1+12)2=214である。
以下に、数列 {an}n=1 が単調増大で、有界(2より大、3より小)である事を示す。
するとテキストの定理により、この数列は2より大きく、3以下のある実数に収束することが分かる。
nが3以上の自然数の時は、anを2項定理を用いて展開すると
  an=(1+1n)n=nm=0nCm1nm(1n)m(1)
  ここで nCm は、n個のものからm個取り出す取り出し方の総数で、
mが1以上でn 以下の自然数の時は
nCm=n!m!(nm)!(2)
ここで、m が1以上の自然数の時は m!123(m1)m
mが零の時は 0!1 と定義。

すると、
nC0=n!0!n!=1(3) 
m1のとき、nCm=n!m!(nm)!=n(n1)(n2)(n(m1))m!(4)
式(1)に式(2)を代入し,式(3)、(4)を利用して計算すると
an=1+nm=1n(n1)(n2)(n(m1))m!1nm(1n)m
=2+nm=21(11n)(12n)(1m1n)m!(5)
ここで、n より小さい全ての自然数 i に対して
0<1in<1 なので、
2<an<2+nm=21m!(6)

(2)すべての2以上の自然数 n に関して、
2<an<3(7)
であることを示す。
式(6)から
2<an,
an<2+nm=21m!(8)
右辺の m は2以上の自然数なので、
1m!1(m1)m=1m11m
である。故に、
an<2+nm=2(1m11m)=2+(11n)=31n<3

(3)数列 {an}n=1 は単調増加
n2 の時、常に an<an+1 を示せばよい。
式(5)を利用すると(注参照)、
an+1=2+n+1m=21(11n+1)(12n+1)(1m1n+1)m!
すると、
an+1an=n+1m=21(11n+1)(12n+1)(1m1n+1)m!nm=21(11n)(12n)(1m1n)m!
右辺の第一項の和を2つに分けると、
=1(11n+1)(12n+1)(1nn+1)m!
+nm=21(11n+1)(12n+1)(1m1n+1)m!nm=21(11n)(12n)(1m1n)m!

=1(11n+1)(12n+1)(1nn+1)m!
+nm=21(11n+1)(12n+1)(1m1n+1)1(11n)(12n)(1m1n)m!
上の式で、全てのi{1,2,,,,n}に対して,(1in+1)>0(1in+1)>(1in) なので、
an+1an>0

(注)式(3)のnに n+1 を代入すればよい。

 ネイピア数 e について

定義;elim(1+1n)nネイピア数と呼ぶ。
命題1
(1)2<e3
(2)e=m=01m!0!1,m!123(m1)m

 三角関数の微分

 準備 

次の命題が、三角関数の微分を求めるうえで中心的役割を果たす。 
命題2 
limθ0,θ0sinθθ=1
証明
まず、θ を正に保ちながら零に近づける場合を考える。
すると、0<θ<π/2 と考えて良い。
点Oを中心にし、半径1の円を考え、円周上に一点Aをさだめる。
図のように、円周上の点Bを、線分OBが直線OAとなす角がx(ラジアン)となるようにとる。

図からOABOABOAP
ここで、点PはAを通り線分OAと垂直な直線と半直線OBの交点。
すると、
OAB< OAB < OAP
ここで、OAB=1sinθ2,OAB=π12θ2πOAP=1tanθ2なので、
sinθ2 <θ2<tanθ2=sinθ2cosθ各項を2倍すると、
sinθ<θ<sinθcosθ
ここで sinθ>0 なので、これで上式の各項を割ると、
1<θsinθ<1cosθ
1>sinθθ>cosθ
故に、極限の性質から
1limθ0,θ0sinθθlimθ0,θ0cosθ=1
これより、limθ0,θ0sinθθ=1 が得られる。

定理1 三角関数の微分
(1)ddθsinθ=cosθ
(2)ddθcosθ=sinθ
証明
(1); ddθsinθlimh0,h0sin(θ+h)sinθh
ここで、
sin(θ+h)sinθ=sin((θ+h2)+h2)sin((θ+h2)h2)
サイン関数の加法定理を適用すると
=sin(θ+h2)cosh2+cos(θ+h2)sinh2(sin(θ+h2)cosh2cos(θ+h2)sinh2)=2cos(θ+h2)sinh2
故に、 ddθsinθlimh0,h0sin(θ+h)sinθh=limh0,h02cos(θ+h2)sinh2h=limh0,h0cos(θ+h2)sinh2h/2
=limh0,h0cos(θ+h2)limh0,h0sinh2h/2
ここで、
limh0,h0cos(θ+h2)=cosθ
limh0,h0sinh2h/2=1(
なので、
=cosθ

指数関数と対数関数

 実数の累乗

a を任意の実数、n を2以上の自然数とする。
a1=a,a2=aa,a3=a2a=a˙aaan=an1a, 
を総称して、a の累乗と呼ぶ。
an を、a の n 乗 、n をその指数と呼ぶ。
命題1
a,b を任意の実数、m,nを任意の自然数とすると、
(1) aman=am+n(1)
(2) (am)n=amn(2)
(3) (ab)n=anbn(3)

そこで次の計算規則を定義する。
計算規則
a,b を任意の正の実数、α,βを累乗を表わす数とすると、
(1) aαaβ=aα+β(1)
(2) (aα)β=aαβ(2)
(3) (ab)β=aβbβ(3)

命題2
(1)a を1より小さい正の実数とすると、数列 {an}n=1 は単調減少し、零に収束。
(2)a を1より大きい正の実数とすると、数列 {an}n=1 は単調増加し、いくらでも大きくなる(無限大に発散)。

 指数の整数への拡張

次に累乗に関する3つの規則が、そのまま成り立つようにしながら、指数を実数まで拡げよう。
上の定義から、
a0 の時は、任意の自然数m、nに対し、
am÷an=amn(m>n) (1)
=1(m=n)(2)
=1anm(m<n)(3)
であることが分かる。
これが、一つの式 amn で表わせるように、a の指数を取決めたい。
そのためには、指数が零の時、a01
指数 mn が負数の時 amn1anm 
と定義すればよい。
言い換えると、a(0) の指数nが 零と負の整数のとき、
a01,an1an(n<0)(4)
と定義する. すると、指数が整数の時、計算規則(1)、(2)、(3)を満たすことは、容易に確かめられる。

 指数の有理数への拡張

a を任意の正の実数、 mn を任意の有理数のとき、
a の有理数乗 amn を、次のような計算規則を満たすように定義しよう。

有理数乗に拡張した計算規則
mn,mn を任意の有理数、 a,b を任意の正の実数とすると、
(1') amnamn=amn+mn(1)
(2') (amn)mn=amnmn(2)
(3') (ab)mn=amnbmn(3)

累乗をn,n' を任意の自然数(正の整数)、 m, m' を任意の整数と仮定してよい。
計算規則(2')を満たすように定義するには、
(amn)n=((amn)n1)=am 
でなければならない。
そこで、 n乗すると、am となる正の実数をamn と決めることが 自然であろう。
最初に、この定義できちんと正の実数が一つだけ決まることを証明しよう。

命題3
a を任意の正の実数、m,n を任意の整数とする。
すると、n乗すると am になる正の実数 b が存在し、ただ一つに限る。
証明;
f(x)xn という、零と正の実数の上で定義された、関数を考える。
この関数はxが増加するにつれて、連続的に、零から正の無限大に狭義に単調に増加(注参照)していく。
一方、am は必ず正の実数である。
そのため、xが零のときは、 f(x)<am であり、
xを少し増加させても、同じ関係が成り立つ。
関数は単調に零から∞まで増加していくので、
ある正の実数(b 書こう)まで、f(x)<am であり
b以上の実数xに対しては、f(x)am となることが分かる。
関数値は、x の変化につれて連続に変化するのでf(b)=am である。
関数fが狭義単調増加なので,b以外の正の実数xでは、f(x)am である。
(証明終り)
(注) 関数fが狭義単調増加とは、x<yf(x)<f(y) を満たすこと。

命題4
任意の正の実数 a にたいして、その有理数乗を上記のように定義すると
計算規則 (1')~(3') が成り立つ。
証明; ① 計算規則(2')が成り立つことを示す。

 指数関数

aを任意の正の実数とする。
定義
fa(x)ax(x ) という関数を指数関数と呼ぶ。

命題1
(1)a が 1 より大きい実数の時,fa(x)=ax は単調増加
(2)a が 1 より小さい実数の時,fa(x)=ax は単調減少


命題2
指数関数 fa(x)=ax は連続関数である。

 対数関数

指数関数と対数関数の微分

個人用ツール