Processing math: 38%

物理/惑星の運動(2)

提供: Internet Web School

UNIQ7d29ef75212ce02f-MathJax-2-QINU2 による版
(差分) ←前の版 | 最新版 (差分) | 次の版→ (差分)

目次

[非表示]

 ☆☆惑星の運動(2)

この節(2.3)ですでに説明した惑星運動の項では、
惑星の軌道を円と仮定して、 運動の第2法則のもとでは、
ケプラーの法則と万有引力の法則が同等であることを示した。
この節では軌道について仮定せず、
運動の第2法則のもとで、
万有引力の法則と惑星に関するケプラーの3法則が同等であることを導く。

 惑星の運動方程式

他の惑星の影響を無視して、太陽と一つの惑星の2体からなる系を考える。
太陽の質量をM、惑星の質量をmとする。
この2体を、ともに質点であるとみなし、位置はそれぞれの重心とする。
この系には、系外から力が作用しないため、任意の慣性系から観測すると、 系の重心は等速直線運動をする。
ところが、太陽の質量は惑星の質量より圧倒的大きいため2体の重心は太陽の重心とほぼ一致し、
太陽重心は慣性系からみると等速直線運動しているとみなしてよい。

(注)他の惑星の影響を無視し、太陽と惑星を質点とみなしても誤差は小さいことが知られている。

そこで太陽Sを原点Oとする静止座標系を考える。
任意の時刻 t の惑星Ptの位置ベクトルOPtr(t)
速度ベクトルをv(t)とかく。
v(t)=drdt(t))である。
指定した初期時刻t0における惑星の
位置ベクトルr(t0)を、r(t0)=r0,
速度ベクトルv(t0)を、v(t0)=v0,
と仮定する。
すると惑星の運動は、ニュートンの第2法則と万有引力の法則より次の微分方程式で記述される。
 Mdvdt(t)=GMm
\vec{r}(t_0)=\vec{r}_0、\quad \vec{v}(t_0)=\vec{v}_0 \qquad \qquad (2)
ここで、式(1)の右辺中のGは万有引力定数である。

 惑星は平面上を運動する

O,P(t_0)P(t_0)を始点とした初速\vec{v}_0を含む
平面Hを考える。
この平面と直交する一つのベクトル\vec hを考え、
式(1)の両辺の左側から外積として作用させる。
\ \vec h \times \Bigl(M\frac{d \vec{v}}{dt}(t)\Bigr)=\ \vec h \times \Bigl(-\frac{GMm}{\|\vec{r}(t)\|^{2}}\frac{\vec{r}(t)}{\|\vec{r}(t)\|}\Bigr) \qquad \qquad (3)
外積の性質から
左辺は
\ \vec h \times \Bigl(M\frac{d \vec{v}}{dt}(t)\Bigr)=\ M\vec h \times \Bigl(\frac{d \vec{v}}{dt}(t)\Bigr)=\ M\vec h \times \Bigl(\frac{d^2 \vec{r}}{dt^2}(t)\Bigr)
=\ M\Bigl(\frac{d^2 \vec h \times\vec{r}}{dt^2}(t)\Bigr)(注1をみよ)
右辺は
\ \vec h \times \Bigl(-\frac{GMm}{\|\vec{r}(t)\|^{2}}\frac{\vec{r}(t)}{\|\vec{r}(t)\|}\Bigr) = -\frac{GMm}{\|\vec{r}(t)\|^{3}}\vec h \times \vec{r}(t)
なので、 \ M\Bigl(\frac{d^2 \vec h \times\vec{r}}{dt^2}(t)\Bigr) = -\frac{GMm}{\|\vec{r}(t)\|^{3}}\vec h \times \vec{r}(t)
が得られる。
故に
\ \Bigl(\frac{d^2 \vec h \times\vec{r}}{dt^2}(t)\Bigr) = -\frac{Gm}{\|\vec{r}(t)\|^{3}}\vec h \times \vec{r}(t)\qquad \qquad (4)

\vec hを外積として初期条件に作用させると
\vec h \times \vec{r}(t_0) = \vec h \times \vec{r_0}=0, \frac{d \vec h \times \vec{r}}{dt}(t_0) =\vec h \times \frac{d\vec{r}}{dt}(t_0) =\vec h \times \vec{v_0} = 0
故に、
\vec h \times \vec{r}(t_0) = 0, \frac{d \vec h \times \vec{r}}{dt}(t_0) = 0\qquad \qquad (5)
tの関数\vec{x}\triangleq \vec h \times \vec{r}を考えると、
式(4),(5)は
  \ \Bigl(\frac{d^2 \vec{x}}{dt^2}(t)\Bigr) = -\frac{Gm}{\|\vec{r}(t)\|^{3}}\vec{x}(t)\qquad \qquad (4')
\vec{x}(t_0) = 0,\quad \frac{d \vec{x}}{dt}(t_0) = 0\qquad \qquad \qquad (5')
常微分方程式(4')を初期条件(5')のもとで解くと、
\vec{x}\triangleq \vec h \times \vec{r}\equiv 0
が得られる。(注2参照)
これよりベクトル\vec{r}(t)は,常にベクトル\vec{h}と直交し、 平面H上にあることが証明された。

(注1)

(注2)

 運動の第2法則と万有引力の法則からケプラーの3法則を導く 

 ケプラーの第2法則の導出

第2法則(面積速度一定の法則)、
「惑星と太陽とを結ぶ線分が単位時間に描く面積(面積速度)は、一定である」
を導出しよう。

 惑星運動の微分方程式の極座標表示