数学・解析/積分

提供: Internet Web School

数学・解析積分

目次

目次

解説

不定積分

関数 $F(x)$ を微分した関数(導関数)が $f(x)$ のとき、$F(x)$ を $f(x)$ の不定積分または原始関数といい、 $$F(x) = \int f(x) dx$$ と表します。$f(x)$ が $x$ の連続関数ならその不定積分は必ず存在し、加える定数だけを除いて一意的に決まります。

$f(x) = x^a$ のとき、 $$\int x^a dx = \frac{1}{a+1}x^{a+1}+C. \quad (a \ne -1)$$ となります。$C$' は定数で、積分定数といいます。

積分(定積分)

$f(x)$ の不定積分を $F(x)$ で表すとき、 $$\int_{a}^{b}f(t)dt = F(b) - F(a)$$ となり、これを与えられた区間 $[a,b]$ の上での積分と言います。

区分求積法

$f(x)$ の区間 $[a,b]$ の上での積分 $$\int_{a}^{b}f(t)dt$$ は、右図の面積 $S$ を表します。

CAIテスト

個人用ツール
他の言語