物理/力と運動の法則

提供: Internet Web School

物理力学力と運動の法則

目次

 力とその働き

物を動かす時、人は筋力を使ったり、牛馬の力を使う。こうした労働の経験から、大昔から、人は、力という概念が認識し、言語化してきた。 力の理解を深めるには、その働きについて理解する必要がある。

  力の働き

力は物体の運動(速度)を変化させたり、物体を変形させる働きがある。

の 「2.2.1 力の性質」と 「6.1.2 力による運動の変化」 を見てください。

  力の三要素とベクトル表示

多くの経験から、力の働きは、
力の大きさ、力の向き、力が作用する作用点
の、3つで決まる事が知られている。

これらを力の三要素という。
力は、その作用点を始点とする(束縛)ベクトルで表わすと都合がよい。

  力の作用線 

力のベクトルに重ねて引いた直線を力の作用線という。
力の作用線はその作用点を通る。

 いろいろな力と力の一般法則

自然界には4種の基本的な力がある。
マクロな自然の運動を支配する
万有引力と電磁気力(電荷や磁荷の間に働く力)と、磁荷のクーロンの法則など)、
および、ミクロな世界で活躍する
強い核力(強い相互作用)と
弱い核力(弱い相互作用)である。
このほかにも力には、いろいろなものがある。
人間・動物の筋肉の力、弾性力(ばねなどの力))、摩擦力、、機械の生み出す力、浮力、張力
などである。

以下では力の基本法則といくつかの力について学ぶ。

  いろいろな力    

   万有引力 

後述。

   電磁気力  

第6章で扱う。

   核力  

古典力学では扱わない。

   人間・動物の筋肉の力

生体のなかの現象なので、通常、物理学では扱わない。
ただし、これらを扱う生理学では物理学の法則を利用する。

   弾性力とフックの法則

一般に物体は形を変えた時、元に戻ろうとする力を働かせる。
このように元の形に戻ろうとする性質を弾性(だんせい、elasticity)という。
また弾性による復元力を弾性力(elastic force)と呼ぶ。
力を除くと、変形が無くなり元の状態に戻る場合、この変形を弾性変形という。
これに対し、力を除いても変形が残るとき、塑性変形(そせいへんけい,plastic deformation)という。
弾性力は、原子を構成する正負の電荷(電子と陽子)に起因する。
多くの物質は電気力で引き合う原子・分子が最も安定する位置に配置され形を保つ(結晶構造)。
これに外力を加えて変形する(歪む)と、
安定した位置の戻ろうとする原子・分子間の電気力が働く。これが弾性力(応力)である。
さらに歪と応力が比例しているような弾性体をフック弾性体という。
フック弾性系ではフックの法則が成り立つ。
変形が小さい場合、多くの物質で、歪と弾性力はほぼ比例するので、フックの法則が近似的に成立する。
フックの法則とばね、ばね定数については、下記の記事をご覧ください。

(注)弾性現象は複雑であり、現在でも未知の部分が多い。

   摩擦力

物体$A$が他の物体$B$と接触しながら動いているとき、
物体$A$は、物体$B$から運動を止めようとする、接触面と平行な力(抗力と呼ぶ)を受ける。
この現象を運動摩擦(あるいは動摩擦)といい、この抗力を運動摩擦力という。
また物体$A$が他の物体$B$に接触し静止している状態で、
外力をうけてBと接触しながら動こうとするときも、
物体$B$から、静止状態を保たせようとする接触面と平行な力を受ける。
この現象を静止摩擦といい、抗力を静止摩擦力という。
摩擦の原因はいろいろあるが主に次の3つがあげられる。
(1)2つの物体の接触面のいくつかの分子間で接触が起こり凝着する(分子の結合。電気力による)
(2)運動に伴い一方の物体が他方の物体との接触面の凹凸にそって運動する際、熱を発生
(3)堅いほうの物体の微小突起が柔らかいほうの、接触面を掘り起こす、削り取る。

    摩擦力の大きさ

摩擦力の大きさは、摩擦係数で規定される。
2つの物体の接触面に働く摩擦力の大きさ$F=\|\vec{F}\|$と
接触面を介してお互いに押し合っている力の
接触面との直交成分(垂直抗力)の大きさ$N_{\perp}=\|\vec{N_{\perp}}\|$
との比$\mu:=F/N_{\perp}$を摩擦係数と呼ぶ。
この定義から、${\bf F=\mu N_{\perp}} $ が得られる。
静止摩擦係数$\mu_{0}$と動摩擦係数$\mu$がある。

  力の一般法則

   作用・反作用の法則(運動の第3法則)

第一の物体が第二の物体に力$\vec{F}_{2,1}$(作用と呼ぶ)を及ぼすときは、
第二の物体は第一の物体に力$\vec{F}_{1,2}$(反作用)を及ぼす。
作用と反作用は、力の大きさは等しく向きは逆である ($\vec{F}_{1,2}=-\vec{F}_{2,1}$)。

この法則は,ニュートンが、2つの玉の衝突の問題を考察する際に発見した。
 

この法則にもとずく力の一例として糸の張力について考えよう。

   糸の張力

紐や糸の一端Oを固定し、他端Sに質量mの錘をつりさげる。
図参照のこと。

紐は伸びず、切れないとする。議論を簡単にするため紐の質量は無視できるとする。
この時、重力mgで下に引っ張られている錘が静止しているのは、
錘と紐の接合点Sを介して、錘が紐から上向きの大きさmgの力を受けていて、
錘に作用する合力が0になっているからである(運動法則より)。
すると作用反作用の法則により、糸は、接合点Sを介して錘から、下向きにmgの力をうける。
それでは紐が静止しているのはなぜなのだろう。
紐の中間の任意の点をAとする。紐のSA部分は静止しているので、この部分に働く力の合計は(運動法則より)0になっているはずである。
ところが紐SAはS端を介して下方にmgの力をうけているので、他端Aを介して、上方にmgの力を、紐のAO部分から受けていることが分かる。
すると、作用・反作用の法則から、紐のAO部分はA点を介して、紐のSA部分から、下方にmgの大きさの力を受けていることが分かる。
このように、紐は(切れない場合には)どの点Aでも、その点を介して、互いに大きさmgの力で引っ張りあっている。切れないようにしているのである。
これを紐・糸の張力という。
張力は、非常に小さい変形に対する、弾性力と考えることもできる。

  力の合成と分解の法則 

一つの質点に、力 $\vec F_1,\vec F_2, \cdots , \vec F_n$ が同時に働いた時と、
$\vec F =\vec F_1 + \cdots +\vec F_n$(ベクトルとしての和)という一つの力が働いたときとは、
この質点の運動は同一であることが実験により、確かめられている。
このため、力 $\vec F_1,\vec F_2, \cdots ,\vec F_n$が同時に働く時
その合力は、ベクトル和$\vec F =\vec F_1 + \cdots +\vec F_n$で与えられる。
但しこれらの力の作用点は同じである必要がある。
逆に一つの力を同一点に作用する2つ以上の力の和に分解すると
物体の運動を簡単に見つけられることがある。
これらについては

  • 力(wikipedia) の「4 力の合成と分解」を見てください。

 運動の3法則

ニュートンは以下に述べる運動の3法則と万有引力の法則を基本法則として採用した。
これらの4法則と力の合成則を用いて、地上の物体と惑星や彗星の運動のしかたを明らかにした。

これ以降、
これらの法則は地上のあらゆる物体(気体、液体、固体)の運動や天体の運動の解明に決定的役割を
果たし、最近まで、万能と思われてきた。
(注)20世紀になって、
この法則がなりたたない現象(光速に近い運動や原子や電子など微小な物質の運動)が認識され、
相対論的力学や量子力学が生まれた。
これらは大学で学ぶ。

 運動の第一法則(慣性法則)

慣性法則とは、通常
「力が作用していない物体は等速直線運動をするという法則である」と述べられる。
しかし正確には、
「他の物質から遠く離れ、その作用を受けず自由に運動している物体が、等速直線運動しているように見える観測座標系が存在する」
と主張する法則である。
このような観測座標系を慣性座標系(略して慣性系)という。

太陽系の重心(後述)を原点にし、
座標軸の方向を、非常に遠方の恒星を用いてきめた座標系は、ほぼ正確な慣性系である。
この観測系に対して等速直線運動をする観測系(注1参照)から見ても、
自由運動する物体は、等速直線運動しているので、慣性系となる(「1.3 ガリレイ変換とガリレオの相対性原理」 を参照のこと)。
地上で静止した観測系は、短時間の現象中には、
太陽系の慣性系にたいして、ほぼ等速直線運動するため
慣性系とみなしても殆ど誤差を生じない。
これは、多くの実験で確かめられている(注2参照のこと)。


ニュートンは、ガリレオ、デカルトにより、発見された慣性法則を、
運動の基本法則の第一番目に採用したのである。

物理学では、慣性系で観測するときの、運動法則を研究する。

(注1)全ての座標軸が等速直線運動すること。「1.3 ガリレイ変換とガリレオの相対性原理」を参照のこと。
(注2)しかし、この座標系は、太陽系の慣性系にたいして
等速直線運動ではなく、回転運動(地球の自転など)しているため、
長時間の運動ではその影響がでる。
例えば、フーコーの振り子現象。

 運動の第二法則(運動法則)

一般に、物体がことなれば、
同じ大きさの力を加えても、速度の変わり方はことなる。
速度変化への抵抗力が異なるからだと考えられる。
前述のように、ギリシャ時代には、
物体の速度$v$ は、加えた力$f$ に比例し、抵抗力$r$に反比例して変わると考えられた。
式で書くと$v \propto f/r$、変形すると $f \propto rv$
しかし慣性法則が発見され、力が作用しないと $v$、 $rv$ は不変であり、
アリストテレスの運動法則は誤りであることが、明らかになった。
地球から一定の引力をうけて落下する物体は,
等加速度α(=速度 $v$ の時間変化率$=\frac{dv}{dt}(t)$)で運動することから、
$f\propto \frac{dv}{dt}$ と修正することが自然であろう。
さらに同じ物体を二つ束ねて、地球からの引力を2倍にしても
一つのときと同じ加速度で落ちることは、実験でたしかめられている。
運動への抵抗力rも2倍になったためと考えられる。
これを加味して、力と運動の関係を正確にすると
$\frac{f}{r}\propto \frac{dv}{dt}$、変形すると$f\propto r\frac{dv}{dt}$

比例定数が1となるように単位を選べば$f=r\frac{dv}{dt}$
運動中にも、抵抗力rが変化しないと仮定すれば、$f=\frac{d(rv)}{dt}$
これをベクトル量として正確に表現したものが、運動の第2法則である。
この法則の理解には
運動変化への抵抗力である慣性質量と運動量という概念が必要である。

  慣性質量 

ギリシャ時代の運動変化への抵抗力は、
主として、物体を取り囲む媒質(空中の物体は空気、水中なら水)からの力であった。
これだと真空にすると抵抗力はなくなり
力を受ける物体は無限の速さで運動することになり、矛盾が生じてしまう。
物質により、同じ力でも、簡単に運動状態を変えるもの、変えないものがあり、
運動変化への物質固有の抵抗の大きさがあると考えられる。
経験的には重いもの程、運動を変えにくいことが分かっているので、
抵抗の大きさが、重さに関係しそうだが、全く同じかどうかは分からない。
そこでニュートンは、
物質がもつ運動変化への抵抗の大きさを、その物質の固有の性質として認め、
慣性質量と名付けた。

  運動量

物質の運動状態そのものをとらえようとして、
ニュートン以前にも、多くの先人たちによって、
運動量の萌芽的概念が唱えられ、運動の法則の表現に用いられてきた。 
アリストテレスでいえば、
物体に働く強制力 $F$ 、運動への抵抗力 $r$ と物体の速さ $v$ には,
$ F∝rv$ という関係があった。  
$ rv$を運動量とみなせば、これが、運動量概念を用いた運動法則である。
ガリレオは、重さ $m$、速さ $v$ の物体は、$mv$ という、運動の量を持つと考え、
慣性法則を、
物質に働く合力が零ならば、その物質の運動量は保存される
という法則とも捉えた。
デカルトは、
物体の集合は、外部から力を受けなければ、
運動の量の合計が保たれるように運動すると唱え、
運動量保存則の端緒を開いた。
彼は、これを2つの玉の衝突問題(衝突後、2つの玉は、どのように運動するか)に利用した。
ホイヘンスは、デカルトの研究をさらに発展させた。
しかし彼等は、部分的にしか正しい結論は得られなかった。
その原因は、
運動の方向を考慮できず、
速度ベクトルでなく、速さを用いて運動量の定義をしたことにある。
ニュートンは、初めて正しい運動量の概念を与えた。

ニュートンの運動量の定義;  慣性質量$m$で速度ベクトル$\vec v$ を持つ質点の運動量$\vec P$ は、$\vec P=m\vec v$と定義する。   
質点の速さでなく、速度ベクトルを用いて、運動量をベクトル量として捉えたところが鍵である。

ニュートンは、
作用・反作用の法則(運動の第3法則)と運動の第2法則を用いて、
運動量の保存則を証明した。後で説明する。

運動量についてさらに知りたい方は以下をどうぞ。

  運動の第二法則

この準備のもとで運動の第2法則は、
運動量の時間変化は加えた力に等しい、と述べられる。数式で書くと

$\frac{d\vec P}{dt}(t)=\vec{F}(t)   \qquad \qquad (1)$  

多くの力学問題では、与えられた力のもとで、物体はいかに運動するかを調べることが中心になる。 すると式(1)は,解を求めたい関数($\vec P(t)$) の、時間 $t$ についての微分項を含む方程式になるので、微分方程式と呼ばれる。
慣性質量が運動中一定の場合、上式の右辺は  
$\frac{d\vec P(t)}{dt}=\frac{dm\vec v(t)}{dt}=m\frac{d\vec v(t)}{dt}=m\frac{d^2\vec x(t)}{d^2t}=m\vec a(t)$
と変形出来る。
この場合の運動方程式は、

$m\vec a(t)=\vec{F}(t)   \qquad \qquad \qquad (2)$  

この変形は、質点の加速度$\vec a$、速度$\vec v$、位置$\vec x$を求める時に便利である。
例えば、加速度を求めたいときは、
$m\vec a(t)=\vec F$ を解いて、$\vec a(t)=\vec F/m$
速度を求めたいときは、$m\frac{d\vec v(t)}{dt}=\vec F$を解けば良い。

今後、微分方程式を解く問題では$\vec{F}$は一定の場合に限定する。
$\vec{F}$ が時間とともに変わる時は、
解法には微分方程式の知識がかなり必要になる。
本テキストの目的を考え、扱わない。

  第二法則の多義性

第二法則は、質量と加速度(あるいは運動量の時間変化)と力の間の関係を与えるので、色々な意味を持つ。

  (1)慣性質量の定義と計測法を与える

加える力が一定のとき、運動方程式は$m\vec a=\vec F$、
ベクトルの絶対値(ノルムともいう)をとると、$m|\vec a)|=|\vec F|$。これより$m=|\vec F|/|\vec a|$。 この式が慣性質量の値を与える。
しかし通常、力は、運動の第2法則から、慣性質量と加速度の積で定義するので、最初に慣性質量を決めなけらばならない。
そこで、慣性質量の基準となる物質を選び、この慣性質量との比で、他の物質の慣性質量を求める。具体的には、
基準となる物質を選び、慣性質量を$1$と決める。
質量を計測したい物質の質量を$m$と書く。
この両物質に同じ力$\vec F$を加え、その加速度$\vec a_0,\vec a$を測定する。
運動の第2法則から、$1\vec a_0=\vec F$、$m\vec a=\vec F$ なので、
$\vec a_0=m\vec a$ が得られる。
両辺の絶対値をとると、$|\vec a_0|=m|\vec a|$ 。
∴ $m=|\vec a_0|/|\vec a|$  
基準物質として、1kg(重力質量)を選び、これを1kg(慣性)と名付ける(注参照)。
この基準物質を用いて、上記の方法で他の物質の慣性質量を計測し、定めることができる。
(注)重力質量は、古来から、天秤ばかりで計られてきた。
いろいろな物質の両質量を計測し比較したところ、同一であることがわかり、
現在では両者は等価であると考えられている。これらについては「万有引力」の項で説明する。

  (2)力の定義と力の単位、大きさの計測

慣性質量の分かっている質点に力を作用させ、その運動量の時間変化(あるいは加速度)を測れば、力の大きさが分かる。
また、$\vec F=\frac{m\vec v}{dt}\quad $ から
力の単位は、質量と速度の単位の積を時間の単位で割った、$㎏*m/s^2$ である。これをニュートンといい、Nで表す。
$N:=㎏*m/s^2$
この関係から、加速度の単位$m/s^2$は,次のように表現できる。
$m/s^2=\frac{N}{kg}$

 

  (3)質点の質量と作用する合力がわかれば、初期時刻の質点の位置と速度から、質点の運動が正確にわかる

質点の質量とそれに作用する合力$F$ が(力の法則などから)分かると、加速度がわかる。
それを積分すると、初期時刻 $t=0$ の質点の位置と速度を用いて任意の時刻 $t \ge 0$ の質点加速度、速度、位置が正確に求められる。
これを、初期条件のもとに運動方程式を解くという。
もっとも簡単な運動を例にして、実際に解いてみよう。

  $\quad F$が一定の場合の、方程式の解

$\qquad$質点の質量を$m$、作用する力を$\vec F$(一定)、初期時刻$t=0$における質点位置を$\vec x_0$,初期速度を$\vec v_0$とする。
運動方程式;$m (d^2/dt^2)\vec x(t)=\vec F$  
加速度;$(d^2/dt^2)\vec x(t)=\vec F/m$   
速度;$\vec{v}(t)=(d/dt)\vec x(t)=(\vec F/m)t+\vec v_0$
$\qquad$ 検算:微分すると加速度$\vec F/m$が得られ,初期速度$\vec v(0)$は$\vec v_0$になっている。
位置;$\vec{x(t)}=\frac{1}{2}(\vec{F}/m)t^2+\vec{v_0}t+\vec x_0$
$\qquad$ 検算:初期位置$\vec{x_0}$、$t$で微分すると上記の速度になる。

   向心力と遠心力

前節の円運動で述べたように(慣性系から観測すると)、
半径$r$ の円上を等速$v$で運動する質点mの加速度は
質点から円の中心に向けた大きさ$\frac{v^2}{r}$のベクトルである。
すると運動の第2法則から、
この質点には、中心にむけた大きさ$m\frac{v^2}{r}$の力が働いていることになる。
これを向心力という。

次に、この運動を質点と一緒に移動する座標系(回転系であり慣性系ではない)から観測すれば、
質点は静止したままである。
この座標系でも静止している物体には力が作用していないという法則が成り立つように、
この質点には向心力と大きさは同じで逆向きの力が作用していると考えると都合がよい。
たとえば、円状のカーブを曲がる電車では
足の裏は、床からの静止摩擦力により円運動に必要な向心力を得て、
電車とともに円運動を行う。
しかし体の他の部分は床から直接力を受けないため等速直線運動をしようとし、
円の中心からみて放射状の外側に動き、体は傾斜し倒れてしまう。
あたかも人は向心力と逆向きの力を受けているように感じ、そのような現象を体感する。
このみかけの力を遠心力という。

  運動の第三法則(作用・反作用の法則)

これについてはすでに3節で説明した。

万有引力の法則

ニュートンは、地上の物体の運動も天体の運動も同じ法則に従うと考えた。
惑星は慣性法則により、等速直線運動をしようとするが、太陽から引力を受け、太陽に向かって落下して、楕円軌道を描くと推測した。
そこで、惑星が受けている力を、ケプラーの法則と運動の第2法則から求めた。するとその力の向きは、太陽に向かっていた。
月の運動の解析からも、月は地球の向きに力を受けていることが分かった。
地上の物体も地球の中心向きの引力を受け落下運動をする。
これらの考察から、ニュートンは、任意の2物体間には、引力が働くという性質を自然は持っていると確信し、
万有引力の法則と名付けた。
この法則の理解には質量(正確には重力質量)という概念が必要でである。

 重さと重力質量について 

人間は,物を持つと重さを感じる。そこで、人類は大昔から重さについて認識していた。
小さい力で、重い物を持ち上げるため、梃子(てこ)という器具を発明した。
重さを正確に知る必要性が高まるとともに梃子の性質を利用した「天秤ばかり」という器具を発明した。

 梃子の原理 

梃子はすでに、紀元前5000年のエジプトのピラミッド建設でも利用されていた。
この当時、人類は、この梃子にかんする簡単な性質は、かなり知っていたのである。
一般的な梃子の原理もかなり前から経験的に知っていたと思われる。

ギリシャのアリストテレスやアルキメデス(Archimedes、紀元前287年 - 紀元前212年)は、梃子の一般原理を正確に述べ、
なぜこの原理が成立するか、論証を試みている。
アルキメデスは、経験から得られている梃子のつり合いに関するいくつかの簡単な事実を前提として、 厳密に梃子の一般原理を論証で導いた。

天秤ばかり 

天秤ばかりは、紀元前5000年ころにはエジプトで使われていた。
均質な一本の棒の真ん中を支点にして、支点から等距離にある両端に皿を固定(あるいは、ぶらさげ)、
片方の皿に計量したい物体をのせ(棒は傾く)、次に他方の皿に「分銅」という重さの分かっている重りを次々とのせて、
釣り合わせる(=棒を水平な状態に保つ)。このときの分銅の重さの合計が、物体の重さになる。
天秤は、支点から等距離に働く、同じ大きさの重さ(地球中心への力)は釣り合うという、梃子の性質を利用したもの。

重力質量 

重さ(地球に向かう力)が、なぜ生じるのか、長い間不明であった。
ニュートンは、万有引力の発見とともに、重力は地球がこの物体に及ぼす万有引力であることを発見した。

 重力質量の測り方

基準物質の質量を1kg(重量)と定めておく。
当初の基準物質は、水1リットル(1000cc)と定められた。
質量を知りたい物体を天秤ばかりの片側のさらに乗せ、これと釣り合うように、もう一方の天秤の皿に水を注ぐ。
この時の水の体積を計量すれば、物質の重さが測れる。
これでは不便なので、色々な体積の水とつりあう分銅を作っておき、これを水の代わりにする。

 万有引力の法則

どのような2つの物体も互いに引き合う。 
力$\vec F$の向きは、これらを結ぶ直線の方向と一致し、
その大きさ$\|\vec F \|$は、2つの物体の質量の積$m_{1}m_{2}$に比例し、その距離$r$の2乗に反比例する。
力の大きさを式で書くと、
$\|\vec F \|=G\frac{m_{1}m_{2}}{r^2}$
これを万有引力の法則という。
ここで、$G=6.67259\times 10^{-11}m^{3}kg^{-1}s^{-2} $ は万有引力定数という。

この法則は、多くの観測から、この宇宙の中で普遍的に成り立つと考えられている。
この力は、後に学ぶ電気力に比べて桁違いに小さく、
身近にある2物体に働く引力は極小で無視できる.
ちなみに、1m離れた質量1kgの2質点に作用する万有引力の大きさは、
質量の単位をkg、距離の単位をmにしたとき
$\|\vec F \|=6.67259\times 10^{-11}\frac{m^3}{kg\times s^2}\frac{1kg^2}{1m^2}
= 6.67259\times 10^{-11}\frac{kg\times m}{s^2}=6.67259\times 10^{-11}N\quad$ (ニュートン;力の単位 )
しかし、質量が大きい星などとの間の引力は大きくなる。
地球の重力は、地球と地上の物体の間に働く、万有引力である。

 物体間の万有引力

実際の物体は大きさがあり、質点ではない。
この場合の万有引力を求めるには、
2物体をそれぞれ細かく分けて、質点系とかんがえ、
それぞれの質点系から任意の質点をひとつずつ選んで、万有引力を求め、
これらすべての合力を求める。
実際に実行するのは一般には難しくコンピュータによる数値計算による。
質量分布が球対称な球体の場合には、球体の外部の質点mとの間の引力の積分計算ができ、
球体の中心にすべての質量が集まった質点と質点mの作る万有引力と一致すること
が分かっている。計算が少し難しいので、本テキストでは、証明はしない。

 万有引力の法則のベクトル表示  

ベクトルは大きさと方向・向きを同時に記述できるので、力の表現には大変便利である。
万有引力の法則をベクトル表示してみよう。
質点$m_1$の位置ベクトルを$\vec{r_1}$、質点$m_2$の位置ベクトルを$\vec{r_2}$、 質点$m_1$が質点$m_2$から受ける万有引力を$\vec{F_{1,2}}$とすると   
$\vec{F_{1,2}}=G\frac{m_{1}m_{2}}{\|\vec{r_2}-\vec{r_1}\|^2}\frac{\vec{r_2}-\vec{r_1}}{\|\vec{r_2}-\vec{r_1}\|}$
この式の右辺の最初の分数項は、力の大きさが2つの質量の積に比例し、2つの質点間の距離の2乗に反比例することを表す。
次の分数項は、力の方向・向きを表す長さ1のベクトルであり、力の方向・向きベクトルという。

万有引力の重ね合わせの原理

複数個の質点の間に働く万有引力は、
それらの2質点間に働く万有引力の和で与えられることが経験的に確かめられている。
万有引力の重ね合わせの原理を満という。正確の述べると以下のようになる。

命題;万有引力の重ね合わせの原理
$n(\geq 2)$ 個の質点 $m_1,m_2,,,,m_n$を考える。
質点$m_i$に質点$m_j$が及ぼす万有引力を $\vec{F}(i,j)=G\frac{m_{i}m_{j}}{\|\vec{r_j}-\vec{r_i}\|^2}\frac{\vec{r_j}-\vec{r_i}}{\|\vec{r_j}-\vec{r_i}\|}$ とすると、
質点$m_i$に他の全ての質点が及ぼす万有引力 $\vec{F}(i,\{1,2,,i-1,i+1,,,m_n\})$は、
$\vec{F}(i,\{1,2,,i-1,i+1,,,m_n\})=\sum_{j,j\neq i}\vec{F}(i,j)$
である。

 地球の重力と重力加速度 

物体に作用する重力([N])を質量([kg])で割ったものを重力加速度といい、$g$で表す。
場所によって多少異なるが、地球表面近くでは、ほぼ$g=9.8 [\frac{m}{s^2}]$である(注参照)。
この定義により、質量$M$の質点に働く重力は、$Mg$となる。

重力は、地上の物体に働く,地球の万有引力と地球自転による遠心力(3.2.5参照)との合力である。
(注)$N= \frac{kg\cdots m}{s^2}$ なので、$\frac{N}{kg}=\frac{m}{s^2}$ 

地上の物体に働く地球の万有引力

地球の全質量をM,地上の物体の質量をmとする。 地球は、ほぼ球形なので、理想化して球と仮定しする。半径をRとおく。$R \approx 6.4*10^{6}$[m]。
地球内部の質量分布が、地球中心に関して対象と仮定すると、
地球が外部の物体に及ぼす引力は、
全質量Mが地球中心に集中している質点が物体に及ぼす引力に等しい(注参照)。
地球はこれらの仮定をほぼ満たすので、 標高h[m]にある物体に作用する地球の万有引力の大きさは、
$F_h=G\frac{Mm}{(R+h)^2}$
遠心力は引力に比べて大変小さい(最も遠心力の大きい赤道でも引力の0.3%強)ので、万有引力と重力は同一と考えると,
物体に働く重力mgは、標高0の物体に働く引力$F_0=G\frac{Mm}{R^2}$と等しい。 これより、
$g \approx G\frac{M}{R^2} \qquad \qquad (1)$

地球の質量の近似計算

式(1)から、地球の質量が計算できる。 測定や実験により
$R \approx 6.4*10^{6}[m], \quad G = 6.67408×10^{?11} [m3 kg^{-1} s^{?2}],\quad g=9.8[m/s^2]$ なので
これらを式(1)に代入して、Mを計算すると、
$M \approx 6.01*10^{24}[kg]$
が得られる。


(注)ニュートンの運動の第2法則により、重力加速度は、重力という力をうけて落下する物体の加速度に等しいことが分かる(3.2節)。
このため、これを重力加速度の定義にする場合もある。

 重力質量と重さ 

物質は、その重力質量$M$に比例した力(重力)$Mg$を地球から受ける。
人が、物体を持った時重さ(重量)を感じるのは、重力を受けて落ちようとする物体を支えるために、重力と同じ大きさで逆むきの力を使うからである。
場所によって重力加速度が変わるため、物質の重量は変わる。
しかし、質量は、その物質固有のもので、不変である。
重力加速度は場所によって変わるものの、天秤ばかりでは計量すべき物体と分銅はわずかな距離しか離れていないため、両者に働く重力加速度は同一である。
分銅の重力質量を$M$、計量すべき物体の重力質量を$m$とし、その場所の重力加速度を$g$とすると、天秤が釣り合う(両者に作用する重力が等しい)ことを式で書くと$Mg=mg$ であり、$M=m$となる。
天秤ばかりは、分銅の重力質量Mと計量物体の重力質量mが同じかどうかを判断する器具であることが分かった。

 慣性質量と重力質量の等価性と質量  

色々な実験により、両質量は一致したので、ニュートンは両者が等価であると考え同一視した。
その後実験に工夫を重ねて非常に大きな精度で両者は一致していることが確かめられた。
現在の物理学では両者は等価であるとされている。
そこで2つの質量を区別しないで、単に、質量と呼ぶ。。

 4法則の役割

質量、運動量、力の単位

質量は基本単位で、SI国際単位系では、キログラム(kg=1000g)が採用されている。
1kgは当初、水1リットルの質量であった。
その後、この1キログラムの定義に合わせた白金製の原器(国際キログラム原器)が作製された。

運動量$\vec P$の単位は、その定義式$\vec P=m\vec v$ の単位の関係から、
運動量の単位=質量の単位*速度の単位=kg*$m/s$である。
SI単位系ではこの単位には名前がつけられていない。
ここで、$*$は、積を表す。

力の単位は、運動の第2法則$\vec F=m\frac{d\vec v(t)}{dt}$によって、
基本単位の時間、長さ、質量を用いて、組み立てられる。
第2法則によってきまる単位の関係式は、力の単位=質量の単位*加速度の単位=kg* $m/s^2$である。
力は大変多く使われるので、その単位には、固有の呼称と記号,ニュートンNが与えられている。 $ N=kg*m/s^2$である。詳しくは、

個人用ツール