物理/運動の法則の応用
提供: Internet Web School
物理 > 運動の法則の応用
目次 |
解説
運動の3法則、万有引力の法則と力の法則を用いると、分子から銀河まであらゆる物体の運動を求めることが出来きる。
その正しさは地上の物体や人工衛星、惑星の運動などで確かめられている。
しかし、もっとはるかかなたの宇宙でもこれ等の法則は正しいのだろうか。
天体観測は、世界各地で行われ、年々新しい発見がされているが、現在のところ、この理論が間違っていることを示す観測結果は、得られていない。
そこで、これらの法則は宇宙の全体を支配しているものと、現在は信じられている。
運動の3法則からはエネルギー保存則や運動量保存則などの重要な保存則を導く事が出来る。
これらの保存則は、色々な運動を調べるとき、大変役立つ。これらについては次節で学ぶ。
質点の色々な運動
最初に最も簡単な運動から考える。
それは質点とみなせる物体の運動である。
質点の落体運動
地球上の物体は高いところから落とすと、時間とともに速度を増しながら落下する。
質点とみなせる物体の落下運動を、運動法則と力の法則を用いて、解析しよう。
質点の質量を$m$とすると、そこに作用する重力による力は、
真下(厳密には地球の重心;後で学ぶ)の方向・向きに大きさ$Mg$である。
落下の向きを負にした落下方向の一次元座標を考えると、重力加速度は$-g$で、質点$m$に作用する力は$-mg$である。
落下の加速度を$\alpha$と置くと、運動の第2法則より$m\alpha=-mg$.
ゆえに質点の落下加速度$\alpha$は負の重力加速度$-g$に等しい。
$t$で微分して$-g$となる関数は$-gt+c$なので、質点の速度は$-gt+c$である。
ここでcは定数で、初期時刻0における質点の速度であり、初期速度と呼ばれる。
微分して$-gt+c$となる関数を求めれば質点の位置$x(t)=-\frac{1}{2}gt^{2}+ ct + d$が得られる。
ここで、$d$は定数で初期時刻0での質点の位置(高さ)である。
これはガリレオが明らかにした落体法則である。
参考文献;
投射体の運動
質点を地面に対して角度$\theta$(ラジアン)、速さ$u$で投げたときの、質点はどのような運動を行うだろうか。
ガリレオは、慣性法則と落体の法則を組み合わせて利用して、放物線を描いて飛ぶことを発見した。
ニュートン力学を用いれば、運動の第2法則と質点に働く力(重力)から、以下のように、この運動を導ける。
適切な座標系をいれる
質点が投げ出された場所を原点とし、飛んでいく方向に地面と水平に引いた半直線をx軸の正の側に、地面と直角で上方に向かう半直線をy軸の正の側とする座標を定める。図参照。
質点に作用する力を求める
空気抵抗を無視すれば、質点に作用する力は、地球からの重力だけである。この力は、質点の質量を$M$,重力加速度を$g$とすると、質点の位置に関係なく常に、$\vec F=(o,-Mg)$である。
運動の第2法則から質点の運動方程式をつくる
質点の位置ベクトルを$\vec r=(x,y)$で表すと
運動方程式は、$M(d^2/dt^2)\vec{r(t)}=\vec F$である。
座標成分表示すると
$M(d^2/dt^2)x(t)=0$,$\quad$ $M(d^2/dt^2)y(t)=-Mg$
運動の初期状態の指定
投げ上げた瞬間を時刻$t=0$とおくと、質点の初期位置は$\vec{r}(0)=(0,0)$,$\quad$ 初期速度は$\vec{v}(0)=(u\cos{\theta},u\sin{\theta})$
運動方程式を初期状態を使って解く
(1)x成分の式を解く
$M(d^2/dt^2)x(t)=0$は、$M(d/dt)v_{x}(t)=0$なので$(d/dt)v_{x}(t)=0$。$\quad$ tで微分して零となるtの関数は定数なので$a$と書くと、$v_{x}(t)=a$
速度の定義より、$(d/dt)x(t)=v_{x}$なので、$(d/dt)x(t)=a$.$\quad$ $t$で微分して$a$となるのは$at+b$(bは未知定数)なので、$x(t)=at+b$
初期条件から、$a=v_{x}(0)=u\cos{\theta}$,$\quad$ また$x(0)=a0+b=0$なので$b=0$。
故に、$x(t)=(u\cos{\theta})t$
(2)y成分の式を解く
$M(d^2/dt^2)y(t)=-Mg$は、$(d/dt)v_{y}(t)=-g$ $\quad$ tで微分して$-g$となる関数は$-gt+c$(cは未知定数)なので、
$v_{y}(t)=-gt+c$ $\quad$故に$(d/dt)y(t)=-gt+c$
tで微分して$-gt+c$となる関数は、$-\frac{1}{2}gt^2+ct+d$なので、$y(t)=-\frac{1}{2}g^2t+ct+d$
初期速度の条件から、$c=-g0+c=v_{y}(0)=u\sin{\theta}$ $\quad$ $d=-\frac{1}{2}g0+c0+d=y(0)=0$
故に、$y(t)=-\frac{1}{2}gt^2+(u\sin{\theta})t$
(3)運動の軌跡(xとyとの関係式)を求める
$x(t)$の式から$t=x(t)/(u\cos{\theta})$
これを$y(t)=-\frac{1}{2}gt^2+(u\sin{\theta})t$に代入すると
$y(t)=(-g/2u^2\cos^2{\theta})x^2(t)+(\tan{\theta})x(t)$
これは上に凸な放物線である。
参考文献は
- ウィキブックス(高等学校理科 物理I 運動とエネルギー)の2.4.1 ニュートン方程式
惑星運動
前述のようにケプラーは、火星と太陽の観測データをユークリッド幾何学を巧みに利用して分析し次の惑星運動の3法則を発見した。
惑星運動の3法則を運動の第2法則と万有引力の法則から導く
この3法則は、運動の第2法則と万有引力の法則から導くことが出来るが少し難しい数学が必要である。大学で学ぶ。
惑星の軌道を太陽を中心とする円運動に限定すると、高校の数学の知識で3法則を導ける。
この場合ケプラーの第一法則は、仮定から、明白なので、第二法則から始める。
ケプラーの第2法則の導出
第二法則は、太陽と惑星を結ぶ動径の単位時間に掃く面積が一定であることを主張する。円運動のばあい、これは等速円運動であることと同じである。
そこで等速円運動であることを導こう。
太陽と惑星は質点として扱い、質量をそれぞれ$M,m$とする。
惑星の軌道面をxy平面にし、太陽をその原点にとる。円運動の半径を$r$, 太陽と時刻$t$における惑星を結ぶ線分が、x軸となす角度を$\theta =\theta(t)$とおく。
惑星Pの位置;$\vec{r}(t)=r(\cos\theta(t),\sin\theta(t))$
惑星の速度;$\vec{v}(t)=d\vec{r}(t)/dt=r(d\cos\theta(t)/dt,d\sin\theta(t)/dt)$
$=r(- \sin\theta(t)\frac{d\theta(t)}{dt},\cos\theta(t)\frac{d\theta(t)}{dt})$
=$ r \frac{d\theta(t)}{dt}(- \sin\theta(t), \cos\theta(t)) $
惑星の加速度;$\vec{\alpha}(t)=d\vec{v}(t)/dt=r(d^2\theta(t)/dt^2)(-\sin\theta(t),\cos\theta(t))$
$+r(d\theta(t)/dt)(-\cos\theta(t)\frac{ d\theta(t)}{dt},-\sin\theta(t)\frac{ d\theta(t)}{dt} )$
$= r(d^2\theta(t)/dt^2)(-\sin\theta(t),\cos\theta(t))-r( \frac{d\theta(t)}{dt})^2( \cos\theta(t), \sin\theta(t)) $
惑星に働く力;万有引力の法則より、太陽の方向に向いた、大きさ$GMm/r^2$の力なので
$\vec{F}(t)=-(GMm/r^2)(\cos\theta(t),\sin\theta(t))$
と表せる。
この力が、惑星の運動を変化させ、上述の加速度を生じさせたのだから、運動の第2法則$\quad m\vec{\alpha}(t)=\vec{F}(t)\quad$より、
$mr(d^2\theta(t)/dt^2)(-\sin\theta(t),\cos\theta(t))-mr( \frac{d\theta(t)}{dt})^2( \cos\theta(t), \sin\theta(t)$
$ =-(GMm/r^2)(\cos\theta(t),\sin\theta(t))$
変形すると、
$mr(d^2\theta(t)/dt^2)(-\sin\theta(t),\cos\theta(t))$
$ =(mr(\frac{d\theta(t)}{dt})^2-GMm/r^2)( \cos\theta(t), \sin\theta(t)) \qquad ------ \qquad (1)$
$(-\sin\theta(t),\cos\theta(t))$ と$( \cos\theta(t), \sin\theta(t))$は直交するベクトルなので、(1)式が成立する必要十分条件は、
$d^2\theta(t)/dt^2=0 \qquad ------ \qquad (2)$,
$mr(\frac{d\theta(t)}{dt})^2-GMm/r^2=0 \qquad ------ \qquad (3)$
である。
(2)式から、角速度$\omega(t)=\frac{d\theta(t)}{dt}=\omega_{0}$(定数)が
(3)式から、$mr(\frac{d\theta(t)}{dt})^2=GMm/r^2$が
得られる。
これらより、惑星は等角速度
$\Large{\omega_{0}=\pm\sqrt{GM/r^3}}$ $\qquad ------ \qquad $ (4)
で太陽の周りを回転することが分かり、ケプラーの第2法則が得られた。
ケプラーの第3法則の導出
惑星が太陽の周りを一周する時間$T$(周期という)は、$T=2\pi/\omega_0$なので、(4)式より、
$T=2\pi/\sqrt{GM/r^3}=2\pi\sqrt{r^3/GM}$,
故に$T^2=4\pi^2r^3/GM$,
$T^2/r^3=4\pi^2/GM$
これは軌道が円の場合のケプラーの第3法則である。
万有引力の法則を,ケプラーの法則と運動の第2法則から導く
惑星が太陽の周りを円運動しているとき、太陽が惑星に及ぼしている力を計算する。
ケプラーの第2法則より、円運動する惑星は角速度一定である。これを$\omega_0$とする。
太陽の位置を原点とし円の半径を$r$とすると、この惑星の加速度は$\vec{\alpha}(t)=-r( d\theta(t)/dt)^2( \cos\theta(t), \sin\theta(t)) =-r\omega_0^2( \cos\theta(t), \sin\theta(t))$ 。これは、太陽にむかう大きさ$r\omega_0^2$のベクトル。
運動の第2法則より、惑星に働く力$\vec F$は、太陽の方向に、大きさ$mr\omega_0^2$
ここで、$m$ は惑星の慣性質量である。
$\omega_0^2$を$r$の関数で表すためケプラーの第3法則と用いる。
惑星の公転周期$T$と円の半径$r$の間には$T^2/r^3=C,\quad C$;定数
$T=2\pi/\omega_0$なので
$(2\pi/\omega_0)^2/r^3=C \quad $∴$\omega_0^2=4\pi^2/(Cr^{3})$
それゆえ、力の大きさは
$mr\omega_0^2=\frac{4\pi^2}{C} \frac{m}{r^2}$
さらに、太陽の質量$M$が$k$倍になると、質量$M$の太陽が$k$個あり、それぞれが惑星に上記の力を与えると考えられる。
すると惑星に働く力は$k$倍になるので力の比例部分$\frac{4\pi^2}{C}$は太陽の質量$M$に比例することが分かる。
比例定数を$G$とおくと、$\frac{4\pi^2}{C}=GM$
従って惑星に働く力の大きさは、太陽の方向に、
$GM\frac{m}{r^2}=G\frac{mM}{r^2}$
これは万有引力の法則である。
(注)この式は万有引力の法則の式と同じだが、質量$m$は、慣性質量であり、対称性から太陽の質量$M$も慣性質量と考えられる。
しかしニュートンは重力を生む質量は、慣性質量と完全には一致しない可能性もあると考え、重力質量という概念を生みだしと思われる。
既述のように、多くの実験の結果、両質量は同一であると考えられている。
重量質量を使わず、慣性質量だけを用いても、ニュートン力学を構成することが出来る。これを提唱する物理学者もいる。
それには万有引力の法則のかわりに、次の法則を採用すればよい。
外力が働かないときは、どんな2質点も、お互いに相手に向かって,
加速度運動して近ずく。両者の加速度は、両者の距離の2乗$r^2$に反比例し、それぞれの慣性質量の比に反比例する。
式で書くと、
質点1の慣性質量と加速度の大きさを$m_1$,$\alpha_1$
質点2の慣性質量と加速度の大きさを$m_2$,$\alpha_2$
とすると、$m_1\alpha_1=m_2\alpha_2$、$m_1\propto 1/r^2$,$m_2 \propto 1/r^2$
この法則と運動法則により2質点間に働く力(万有引力)を求めると、
ニュートンの万有引力の法則と同じ式だが、質量は慣性質量になり、
重量質量を用いずニュートン力学が構成できる。
振り子と単振動
- ウィキペディア(単振動)の「振り子」の項を見てください。
質点のつり合い
質点に力F1,,Fnが作用し、質点が静止したまま(あるいは等速直線運動)であるとき、それらの力は釣り合っているという。
釣り合いの条件は、F1+ +Fn=0です(運動の第2法則と力の合成則から導出できる)。
仕事とエネルギー
仕事
物体に力を加えて動かす時、力はこの物体に仕事をするという。
仕事(の量)は力の大きさと動かした距離の積に比例する。
正確には、加えられる力$\vec F$ が一定で、
力の向きに対して角度$\theta$[rad] だけ傾いている直線上を $\vec s$ 移動したとき、
仕事W は、
$W=\|\vec F\|\|\vec s\| \cos\theta$
で定義する。
ここで任意のヴェクトル$\vec a$に対して、$\|\vec{a}\|$はその大きさ$\sqrt{\sum_{i}a_i^2}$を表す。
特に、この式において$\theta=0$(すなわち $\cos\theta = 1$)とすると
「加えられる力が一定であり力の方向が運動の方向と一致している場合」になり、
$W=\|\vec F\|\|\vec s\| $ である。
また、$\theta=\pi/2$($\cos\theta = 0$)のとき、$W = 0$となる。
すなわち、力が運動の方向と直角方向にはたらいている場合、その力は仕事をしない。
$W=\|\vec F\|(\|\vec s\| \cos\theta)$と表現すると、
仕事は、力の方向に$\|\vec s\| \cos\theta$だけ動かしたときの仕事に等しいことが分かる。
$W=(\|\vec F\| \cos\theta)\|\vec s\|$と表現すると、
仕事は、
大きさ$\|\vec F\| \cos\theta$ の$\vec s$方向の力を加えて、$\vec s$だけ動かしたときの仕事に等しい
ことが分かる。
- ウィキペディア(仕事)を参照のこと。
仕事の内積を用いた表現
内積は、仕事の記述や計算に便利な数学の概念である。
内積の定義と仕事の内積表現
ベクトル$\vec a,\vec b$の内積$ \vec a \cdot \vec b $は、$\|\vec{a}\|\|\vec{b}\|
\cos\theta$で定義する。
ここで、$\theta$は、ベクトル$\vec a,\vec b$のなす角($0\le \theta \le \pi$ )である。
- ウィキブックス(高等学校数学B ベクトル) の1.1.6~ 1.1.8を参照のこと。
ウィキブックスでは2次元のベクトルを中心にして説明しているが、
3次元ベクトルの場合にも、成り立つように修正することは容易である。
例えば、ベクトル$\vec a = (a _1,a _2,a_3)$の長さは、$\|\vec a\|= \sqrt {a _1^2 +a _2^2+a _3^2}$,
ベクトルの内積は、この長さを使えば、全く同じ式で良い。
内積を使った 仕事の表現
内積 $\cdot $を用いると、
物体に力$\vec{F}$を加えて、$\vec{PQ}$(P点からQ点まで)動かした時の力のなす仕事は、
$ W=\vec{F}\cdot\vec{PQ} $と表せる。
内積の性質
仕事は、前述のように内積で表現できるので、内積の性質を調べておくと、仕事について考察する時に役に立つ。
$\vec a,\vec b,\vec c$が、すべて同じ次元(2か3)のベクトルとし、 $\alpha$は実数とする。
(1)$\vec a \cdot \vec b =\vec b \cdot \vec a$
(2)$\vec a \cdot \vec b =\sum_{i}a_ib_i$ 、
ここで$a_1,b_1$はそれぞれ$\vec a,\vec b$のx座標成分、同様に、添え字2はy座標成分、3はz座標成分
直交座標系はどんなものでも良い。しかしすべてのベクトルは同じ座標系で座標成分表示しなければならない。
(3)$(\vec a +\vec b) \cdot \vec c =\vec a \cdot \vec c+\vec b \cdot \vec c$
(4)$(\alpha \vec a)\cdot \vec b =\vec a \cdot (\alpha \vec b)=\alpha (\vec a \cdot \vec b)$
が成り立つ。
(証明)
(1)は、内積の定義から明らか。
(2);次の三角形の余弦定理を利用する。
三角形の第2余弦定理;
図のような$\triangle {ABC}$を考える。
頂点A,B,Cの対辺の長さをそれぞれ$a,b,c$とし、$\angle{ACB}=\theta$とする。
すると、$c^2=a^2+b^2-2ab\cos\theta$
余弦定理の証明;頂点$A$から対辺$BC$におろした垂線の足を$H$とする。
ピタゴラスの定理により、
$c^2=\overline{BH}^2+\overline{AH}^2$。$\qquad$ 右辺の第2項に、再び、ピタゴラスの定理を適用して、
$=\overline{BH}^2+(b^2-\overline{CH}^2)$ $\qquad$ $\overline{BH}=a-\overline{CH}$を代入すると、
$=(a-\overline{CH})^2+(b^2-\overline{CH}^2)=a^2+b^2-2a\overline{CH}$,$\quad$ $\overline{CH}=b\cos\theta$なので、代入すると
$=a^2+b^2-2ab\cos\theta$
証明終わり。
(2)の証明
ベクトル$\vec a $と$\vec b $を、
始点が点$C$である有向線分で表現し、その終点を$B$,$C$で表す。
すると$\vec a=\vec{CB}$, $\vec b=\vec{CA}$である。
ベクトル$\vec c=\vec a-\vec b$を導入すると、
$\vec c=\vec a-\vec b=\vec{CB}-\vec{CA}=\vec{CB}+\vec{AC}=\vec{AB}$
3角形$\triangle {ABC}$を考え、第2余弦定理を適用しよう。
$\angle{ACB}=\theta$とおく。すると、
$\|\vec c\|^2=\|\vec a\|^2+\|\vec b\|^2-2\|\vec a\|\|\vec b\|\cos{\theta}$
$=\|\vec a\|^2+\|\vec b\|^2-2\vec a \cdot \vec b$が得られる。
この式を変形して$\vec a \cdot \vec b$だけを左辺に置くと、
$\vec a \cdot \vec b=(\|\vec a\|^2+\|\vec b\|^2-\|\vec c\|^2)/2$ 。
$\vec c=\vec{AB}=\vec{AC}+\vec{CB}=-\vec b+\vec a$なので、
$\vec a \cdot \vec b=(\|\vec a\|^2+\|\vec b\|^2-\|\vec a-\vec b\|^2)/2 $
この右辺を、ベクトルの直交座標成分で表すと、次式が得られる。
$\vec a \cdot \vec b=(\sum_{i}a_i^2+\sum_{i}b_i^2-\sum_{i}(a_i-b_i)^2 )/2 $
$=\sum_{i}a_i b_i$
(2)の証明終わり。
(性質3)の証明;ある一つの直交座標系をさだめ、両辺を、性質(2)を利用して、座標成分であらわす。両辺が等しいことが分かる。
(性質4)の証明;同様に、3つの式を、座標成分表示すれば、みな等しいことが、簡単に分かる。
物体が曲線運動するときの仕事量の求め方
力を受けた時の物体の運動は直線とは限らないが、運動の軌跡を細かく区切って眺めると、線分に近いので、物体の変位は、ごく短い線分をつなぎ合わせたものと考える。すると各線分毎に仕事を計算しそれをたせば、全体の仕事量を求めることができる。
エネルギー
物質の持っている仕事をする能力をエネルギーという。
- エネルギー(ウィキペディア)の自然科学の項を参照のこと。
仕事の単位
仕事の定義$W=\|\vec F\|\|\vec s\| \cos\theta$から、仕事の単位は、力の大きさ$\|\vec F\|$の単位と長さ$\|\vec s\|$の単位を掛けたものになる($ \cos\theta$ は無単位なので )。
MKSA単位系では、力の大きさの単位は$N$(ニュートン)、長さの単位は$m$(メートル)なので、仕事の単位は$Nm$ となる。
これを$J$(ジュール)と呼ぶ。$J=Nm$である。