ソースを表示
提供: Internet Web School
物理/力と運動の法則
のソース
移動:
ナビゲーション
,
検索
以下に示された理由により、このページの編集を行うことができません:
この操作は、
登録利用者
のグループに属する利用者のみが実行できます。
このページのソースを閲覧し、コピーすることができます:
[[物理]] > [[物理/力学(2) 力と運動の法則|3章 力と運動の法則]] ==力の性質== 力は物体の運動を変化させたり、物体を変形させる働きがある。 *[[wikibooks_ja:中学校理科 第1分野|ウィキブックス(中学校理科 第1分野)]] の 「2.2.1 力の性質」と 「6.1.2 力による運動の変化」 を見てください。 ==いろいろな力== [[wikipedia_ja:万有引力|万有引力]] ,[[wikipedia_ja:重力|重力]]、[[wikipedia_ja:クーロンの法則|電気力(電荷のクーロンの法則)]]、[[wikipedia_ja:クーロンの法則|磁気力(磁荷のクーロンの法則)]]、[[wikipedia_ja:フックの法則|弾性力(ばねなどの力))]]、摩擦力、人間・動物の筋肉の力、機械の生み出す力、浮力、張力<br/> など、色々な力があります。<br/> リンクをとってあるものについてはクリックすると詳しい説明がありますが、この段階では感じだけをつかめば良いです。<br/> これらの力のいくつかはこれから詳しく学んでいきます。 === 力の三要素とベクトル表示=== 力の働きは、<br/>力の大きさ、力の向き、力が作用する作用点<br/>の、3つで決まる。<br/> これらを力の三要素という。<br/> 力は、その作用点を始点とする(束縛)ベクトルで表わすと都合がよい。 ==== 力の作用線 ==== 力のベクトルに重ねて引いた直線を力の作用線という。<br/> 力の作用線はその作用点を通る。 ==力に関する法則== ===万有引力とその法則 === ニュートンは、地球上の落体運動や惑星の運動を生じさせる力の根源は、物体間に働く引力であると認識し、2つの質点の間に働く引力を定める式を、ケプラーの法則から求め、万有引力の法則と名付けた。 *[[wikipedia_ja:万有引力|ウィキペディア(万有引力)]] 万有引力の式中の万有引力定数Gについては、 *[[wikipedia_ja:万有引力定数|ウィキペディア(万有引力定数)]] を参照のこと。 ==== 地球の重力と重力加速度 ==== 地球上の物体に対して働く地球の万有引力と地球自転による遠心力との合力を地球の重力という。<br/> *[[wikipedia_ja:重力|重力(ウィキペディア)]] この力を受けて物体が落下するときの加速度を重力加速度といい、$g$で表す。$g=9.8 m/s^2$である。<br/> *[[wikipedia_ja:重力加速度|重力加速度(ウィキペディア)]] ===電気力、磁気力=== 9章で学びます。簡単な説明は、 [[wikibooks_ja:中学校理科 第1分野|ウィキブックス(中学校理科 第1分野)]] の4章をご覧ください。 ===作用・反作用の法則(運動の第3法則)とそれに基づく力=== 第一の物体が第二の物体に力(作用と呼ぶ)を及ぼすときは、<br/> 第二の物体は第一の物体に力(反作用)を及ぼす。<br/> 作用・反作用は同じ直線上にあり、大きさは等しく向きは逆である<br/> という経験則(実験や観測で確かめられた法則のこと)である。<br/> *[[wikipedia_ja:運動の第3法則|ウィキペディア(運動の第3法則)]] ===弾性力とフックの法則=== *[[wikibooks_ja:高等学校理科 物理I 運動とエネルギー|高等学校理科 物理I 運動とエネルギー(ウィキブックス)]]の「2 運動の法則、2.3 弾性力」 および[[wikipedia_ja:フックの法則|フックの法則(ウィキペディア)]] ===摩擦力=== *[[wikipedia_ja:摩擦力|摩擦力(ウィキペディア)]] ===圧力=== 気体や液体の中におかれた物体の表面は、気体や液体から力を受ける。 <br/> 単位面積の面に働く力を'''圧力'''といい、気体の場合は気圧、水の場合は水圧ともいう。 <br/> 気体で圧力が生じるのは、それらを構成する膨大な個数の分子・原子がいろいろな方向にはげしく飛び回っていて、物体の面に衝突し、力を与えるためである。<br/> 水圧は、水の流動性と重力にもとずく。<br/> 次の法則が知られている。<br/> ①気圧や水圧は、同じ場所ならば、どのような向きの面に対しても一定である。 <br/> ②下部になるほど、圧力は大きくなる。但し気体の場合はわずかである。 <br/> 水圧についての法則は、運動法則が必要なので、 [[物理/力学(3) 運動の法則の応用|4章4節]] で学ぶ。<br/> 気圧については、[[物理/気体の分子運動論|「7章 気体の分子運動論」]]で学ぶ。<br/> ===力の合成と分解の法則 === 一つの質点に力 $F_1, F_2, \cdots , F_n$ が同時に働いた時と、$F = F_1 + \cdots + F_n$(ベクトルとしての和)という一つの力が働いたときとは、質点の運動は同一であることが実験により、確かめられています。実はこの自然の法則に合致するようにベクトルの和は定められたのです。但し力が作用する場所が異なれば働きもかわるので、作用点に注意が必要です。 逆に一つの力を2以上の力の和に分解すると物体の運動を簡単に見つけることができることがあります。これらについては *[[wikipedia_ja:力|力(wikipedia)]] の「4 力の合成と分解」を見てください。 質点の運動法則について学ぶ。2章で学んだように質点は大きさをもたない点であり、大きさをもった物体の運動の解析に比べてはるかに容易です。 == 運動の3法則 == ニュートンは次に述べる運動の3法則と万有引力を基本法則として記述し、地上の物体の運動も惑星の運動も導けることを明らかにした。<br/> これ以降、今日まで、これらは地上のあらゆる物体(気体、液体、固体)の運動や天体の運動の解析に決定的役割を果たてきた。<br/> (注)20世紀になって、この法則がなりたたない現象(高速度に近い物体の運動や原子や電子など微小な物質の運動)が認識され、相対論的力学や量子力学が生まれた。<br/> これらは大学で学ぶ。 ===運動の第一法則(慣性法則)=== 慣性系から観測すると、力を受けていない質点は等速の直線運動をするという経験則であり,慣性系は存在するという主張をしている法則です。 *[[wikipedia_ja:運動の第1法則|ウィキペディア(運動の第1法則)]] *[[wikipedia_ja:慣性系|ウィキペディア(慣性系)]] ===運動の第二法則(運動法則)=== 物体が力を受けた時、その物体の運動がどのように変わるかを明らかにした経験則です。<br/> 力の正確な定義式とも見なせます。<br/> この法則の理解には質量という概念が必要です。 ====質量==== *[[wikipedia_ja:質量|ウィキペディア(質量)]] ====運動の第二法則と微分方程式==== この準備のもとで運動の第2法則は *[[wikipedia_ja:運動の第2法則|ウィキペディア(運動の第2法則)]] で与えられます。<br/> この式は時間関数 $x(t)$ の時間 $t$ についての2階の微分が $F/m$ に等しいという微分を含んだ方程式なので、微分方程式と呼ばれます。<br/> $F$ が力の法則などから分かると、質点の初期時刻 $0$ の位置と速度を与えれば、この方程式を解いて、任意の時刻 $t \ge 0$ の質点の位置が分かります。<br/> それを微分して速度や加速度も分かります。<br/> 今後は特に断らないときは力$F$は一定として議論をします。<br/> $F$ が時間とともに変わる時は、微分方程式の知識が必要なので大学で学びます。 ====運動量==== ===運動の第三法則(作用・反作用の法則)=== これについてはすでに3章で説明しました。 ==ガリレイ変換とガリレイの相対性原理== どのような慣性系で観測しても力学の法則は同じであるという原理です。 一つの慣性系にたいして等速直線運動する観測系を考えると、力の働いてない物体はやはり、等速直線運動するので慣性系であり、運動の第2、第3法則は成立することを主張している。 *[[wikipedia_ja:ガリレイ変換|ウィキペディア(ガリレイ変換とガリレイの相対性原理)]] この原理は長い間物理学の指導原理となっていたが、20世紀になって、アインシュタインによって修正された。 == CAIテスト == *<span class="pops"> [[cai_ja:GENPHY00010003|CAIテストのページへ(新しいWindowが開きます)]] </span>
物理/力と運動の法則
に戻る。
表示
本文
トーク
ソースを表示
履歴
個人用ツール
ログイン
案内
メインページ
コミュニティ・ポータル
最近の出来事
最近の更新
おまかせ表示
ヘルプ
検索
ツールボックス
リンク元
関連ページの更新状況
特別ページ一覧