ソースを表示
提供: Internet Web School
物理/運動の法則の応用
のソース
移動:
ナビゲーション
,
検索
以下に示された理由により、このページの編集を行うことができません:
この操作は、
登録利用者
のグループに属する利用者のみが実行できます。
このページのソースを閲覧し、コピーすることができます:
[[物理]] > [[物理/力学(3) 運動の法則の応用|4章 力学(3) 運動の法則の応用]] 運動の3法則と力の法則を用いると、分子から銀河まであらゆる物体の運動を求めることが出来きます(その正しさは人工衛星や惑星の運動などで確かめられているが、もっとはるかかなたの天体運動にも正しいというのは仮説である)。 運動の3法則からはエネルギー保存則や運動量保存則などの重要な保存則を導く事が出来る(次章で学ぶ)。 == 質点の色々な運動== 最初に質点とみなせる物体のいくつかの運動を考える。 === 落体運動=== 地球上の物体は高いところから落とすと、時間とともに速度を増しながら落下する。<br/> 質点の質量を$M$とすると、そこに作用する[[物理/力学(2)_力と運動の法則#.E3.80.80.E5.9C.B0.E7.90.83.E3.81.AE.E9.87.8D.E5.8A.9B.E3.81.A8.E9.87.8D.E5.8A.9B.E5.8A.A0.E9.80.9F.E5.BA.A6.E3.80.80|重力による力]]は、真下(地球の重心)の方向に大きさ$Mg$。<br/> 落下の方向を負にした一次元座標を考え方向まで考慮すると、重力加速度は$-g$、力は$-Mg$。 落下の加速度を$\alpha$と置くと、運動の第2法則より$M\alpha=-Mg$. ゆえに質点の落下加速度$\alpha$は負の重力加速度$-g$に等しい。 $t$で微分して$-g$となる関数は$-gt+c$なので、質点の速度は$-gt+c$である(cは定数で、初期時刻0における質点の初期速度)。微分して$-gt+c$となる関数を求めれば質点の位置$x(t)=-\frac{1}{2}gt^{2}+ ct + d$($d$は定数で初期時刻0での質点の高さ)が得られる。<br/> これはガリレオが得た落体法則と一致する。<br/> 参考文献; *[[wikibooks_ja:高等学校理科_物理I_運動とエネルギー#.E3.83.8B.E3.83.A5.E3.83.BC.E3.83.88.E3.83.B3.E6.96.B9.E7.A8.8B.E5.BC.8F|ウィキブックス(高等学校理科 物理I 運動とエネルギーの2.4.1 ニュートン方程式)]] *[[wikibooks_ja:高等学校理科_物理I_運動とエネルギー#.E7.AD.89.E5.8A.A0.E9.80.9F.E5.BA.A6.E7.9B.B4.E7.B7.9A.E9.81.8B.E5.8B.95|ウィキブックス(高等学校理科 物理I 運動とエネルギーの1.8 等加速度直線運動)]] === 放物運動=== これもガリレオによって発見されたが、ニュートンの第2法則と万有引力の法則から導ける。 *[[wikibooks_ja:高等学校理科 物理I 運動とエネルギー|ウィキブックス(高等学校理科 物理I 運動とエネルギー)]]の2.4.1 ニュートン方程式 === 振り子と単振動 === *[[wikipedia_ja:自由振動|ウィキペディア(単振動)]]の「振り子」の項を見てください。 === 惑星運動=== 前述のようにケプラーは、火星の観測データをユークリッド幾何学を巧みに利用して分析し次の惑星運動の3法則を発見した。 *[[wikipedia_ja:ケプラーの法則|ウィキペディア(ケプラーの3法則)]] この3法則は、運動の第2法則と万有引力の法則から導くことが出来るが少し難しい数学が必要なので大学で学ぶ。<br/> 惑星の軌道を円運動に限定すると、高校の数学の知識で3法則を導けるので、興味がある方はぜひ挑戦してください。 === 質点のつり合い=== 質点に力F1,,Fnが作用し、質点が静止したまま(あるいは等速直線運動)であるとき、それらの力は釣り合っているという。釣り合いの条件は、F1+ +Fn=0です(運動の第2法則と力の合成則から導出できる)。 == 質点系の運動== 質点系の運動を考えよう。 === 質点系の運動と重心=== 質点系とは、いくつかの質点が集まって作っている系のこと。 <br/> 系の各質点は離れ離れでも良く、また系の任意の2つの質点間には作用・反作用の法則を満たす力が働いていてもよい。この力を質点系の内力という。 <br/> 質点系の各質点に外部から力(外力という)が加わる時、この質点系はどんな運動をするだろうか。<br/> 質点系の各質点の位置を$\vec{r_i}$、質量を$m_i $とし、質点$m_i$ に作用する外力を$\vec{f_i}$、他の質点$m_j $からうける内力を$\vec{f_{ij}}$とする($i,j=1 \ldots N$)。<br/> すると、各質点に対して、運動の第2法則により、$\frac{d m_i \vec{v_i}}{dt}=\vec{f_i}+\sum_{j\neq i}\vec{f_{ij}}$, ここで$\vec{v_i}=\frac{d\vec{r_i}}{dt}$、<br/> 加え合わせると、$\vec{f_{ij}}+\vec{f_{ji}}=0$なので、<br/> $\frac{d^2}{dt^2} \sum_i{ m_i \vec{r_i}} =\frac{d}{dt} \sum_i{ m_i \vec{v_i}} =\sum_i{\vec{f_i}} $ <br/> が得られる。質点系の全質量$M= \sum_i{m_i} $と質点系の働く全外力$\vec{F}= \sum_i{\vec{f_i}} $を用いて書きなおすと、<br/> $M\frac{d^2}{dt^2}(\sum_i{ m_i \vec{r_i}}/M)= \vec{F} $ <br/> 質点系の重心を$\vec{R}=\sum_i{ m_i \vec{r_i}}/M $ で定義すると、<br/> $M\frac{d^2}{dt^2}R= \vec{F} $ <br/> この式は、位置$\vec{R}$にあり、力$\vec{F}$をうける質量$M$の質点の運動方程式と同じものであることに注目してください。<br/> 以下の解説も参考にしてください。 *[[wikipedia_ja:質点|ウィキペディア(質点系の力学)]] == 剛体のつり合い== === 剛体=== 剛体(Rigid body)とは、質点の集まりであって、どの質点の間の距離も変わらない、特殊な質点系のことを言う。固くて変形しにくい物質を理想化した概念である。 *[[wikipedia_ja:剛体の力学|ウィキペディア(剛体の力学)]]の序文参照のこと。 剛体の運動は、重心の運動と、重心の周りの回転運動を合成したものになる。重心の運動は前の節で説明したように、質点の運動と同じように扱える。しかし、重心の周りの回転運動について解析するには、少し難しい数学が必要になるので、高校では扱わず大学で学ぶ。 === 剛体のつり合いとは=== いくつかの力が作用し、剛体が静止したままであるか、等速直線運動を続ける場合に剛体(に作用している力)は釣り合っているという。 === 力の作用線と作用線の定理=== 力の作用線とは、力の作用点を通り、力の方向と重なる直線のこと。 剛体の場合、作用線に沿って力の作用点を移動しても、力の作用は変わらない。何故かは、考えてみましょう。 === てこの原理と力のモーメント=== てこの原理については、 *[[wikipedia_ja:てこ|ウィキペディア(てこ)]]の1.てこの原理 を参照のこと。 何故てこの原理が成り立つかを考えてみよう。 力のモーメントについては、 *[[wikipedia_ja:力のモーメント|ウィキペディア(力のモーメント)]]を参照のこと。 なお、これを理解するには、3次元ベクトルの外積(クロス積)の知識が必要です。以下を参照のこと。[[wikipedia_ja:クロス積|ウィキペディア(クロス積)]] === 剛体のつり合い=== インターネットで検索して調べよう。 == 気体や液体の圧力と浮力== == CAIテスト == *<span class="pops"> [[cai_ja:GENPHY00010004|CAIテストのページへ(新しいWindowが開きます)]] </span>
物理/運動の法則の応用
に戻る。
表示
本文
トーク
ソースを表示
履歴
個人用ツール
ログイン
案内
メインページ
コミュニティ・ポータル
最近の出来事
最近の更新
おまかせ表示
ヘルプ
検索
ツールボックス
リンク元
関連ページの更新状況
特別ページ一覧