ソースを表示
提供: Internet Web School
物理/音と音波
のソース
移動:
ナビゲーション
,
検索
以下に示された理由により、このページの編集を行うことができません:
この操作は、
登録利用者
のグループに属する利用者のみが実行できます。
このページのソースを閲覧し、コピーすることができます:
=音と音波= 音波とは、狭い意味では、空気の粗密の振動が伝わっていく縦波である。<br/> 広義には、気体、液体、固体の中を伝わる縦波(粗密波)を音波という。<br/> 音波は波なので、反射、屈折、回折、干渉など、波に共通する特有の性質をもつ。<br/> そのため、「4.1 波の性質」で述べたことは、すべて成立する。<br/> ==音波の伝わり方== ===音波の速さ=== 乾燥した空気をつたわる音波の速さ $V$ は<br/> 空気温度 t℃ が高くなると早くなり、<br/> $V=331.3+0.6 t$<br/> で表せる。<br/> 液体や固体中の音波の速さは、空気中よりずっと大きい。<br/> 音速の測定や理論研究の歴史、種々の媒質中の音速については、 *[[wikipedia_ja:音速 |ウィキペディア(音速)]] を参照のこと。 ===音の3要素 === 音の3要素 とは次の3つである。<br/> (1)音の高さ;<br/> 振動数の高い音ほど、高音に聞こえる。<br/> 1オクターブ高い音とは、振動数が2倍になることをいう。<br/> ちなみに、人間の耳に聞こえる音は、振動数が20Hzから2万Hzの音である。<br/> 可聴音という。<br/> (2)音の強さ;<br/> 音には強く聞こえる音と弱く聞こえる音がある。<br/> 音の強弱は、媒質の密度、波の振幅と振動数によって決まる。<br/> 媒質密度と振動数が同じならば、振幅の大きな音ほど強く聞こえる。<br/> (3)音色;<br/> 発音体が違うと振動数と強さが同じ音でも、音の感じが違う。<br/> これを音色あるいは、ねいろという。<br/> 波の多くは、波形が正弦関数で表せないので、<br/> 振動数や振幅が同じでも、波形が異なるため音色が異なる。<br/> ==音の性質== 以下の(1)から(7)までの音の性質については、<br/> *[[wikibooks_ja:高等学校理科 物理I 波/音波と振動|高等学校理科 物理I 波/音波と振]動]で学んでください。<br/> 以下には、簡単に要点を補足をします。<br/><br/> '''(1)音のうなり'''<br/> 振動数(または周波数)がわずかに異なる2つの音波(波)が干渉して、<br/> 振動数が中間とみなせる、<br/> 振幅がゆっくり周期的に変わる合成波を生ずる現象を言う。<br/> *[[wikipedia_ja:うなり |ウィキペディア(うなり)]] <br/> '''(2)弦の固有振動'''<br/> 張った弦をこすったり、はじいて振動させると、波が両側に伝わり、<br/> 弦の固定端で反射して、進行波との合成波は、固定された両端の変位が零の定常波となる(「1.4.6.3 定常波と進行波」を参照のこと)。<br/> この波動の振動を、弦の固有振動、その振動数を固有振動数という。<br/> 両端の変位が零であることから、定常波動の波長 $\lambda$ と弦の長さ $l$ の間には次の関係が成立つことが分かる。<br/> $l=\frac{\lambda}{2}n,\quad (n=1.2,3,,,)$ 変形すると<br/> $\lambda=\frac{2l}{n},\quad (n=1.2,3,,,)$ <br/> ここで、nは定常波の腹の数。<br/> 上の式から、$\lambda$ は n の関数であることがわかるので、$\lambda_n$ とかく。 すると $\lambda_n=\frac{2l}{n},\quad (n=1.2,3,,,) \qquad \qquad (1)$ <br/> 腹の数が1の固有振動を基本振動(1倍振動)、$n \geq 2$の固有振動を、n倍振動と呼ぶ。<br/> [[File:GENPHY00010402-01.jpg|right|frame|図 弦の固有振動]] 進行波の速さをVとし、n倍振動数を $f_n$ 、その波長を$\lambda_n$ とかくと、 $V=f_n \lambda_n$ <br/> $f_n =\frac{V}{2l}n \quad (n=1.2,3,,,) \qquad \qquad (2)$ <br/> が成立つ。<br/><br/> '''(3)気柱の振動'''<br/> 管の中の柱状の空気のことを気柱という。<br/> 管中の波は、その両端で反射し、元の波と反射波は重ねあって合成波をつくる。<br/> この合成波は定常波になる。<br/> その波長や周波数(振動数)は、ある固有の値しか取れない。<br/> これらについて学ぶ。<br/> 波の変位量としてなにを用いているかで、同じ端でも自由端にも固定端にもなるので注意してください。<br/> [[wikibooks_ja:高等学校理科 物理I 波/音波と振動|ウィキブックス(高等学校理科 物理I 波/音波と振動 1.3 気柱の振動)]] $\qquad$(3.1) 気柱の固有振動<br/> $\qquad$(3.2) 閉管の場合<br/> $\qquad$(3.3) 開管の場合<br/> $\qquad$(3.4) 開口端補正<br/><br/> '''(4)固有振動と共鳴・共振'''br/> 気柱の空気の振動など、振動する系は、それぞれ固有の振動数を持つ。<br/> これを系の固有振動という。<br/> 振動系の固有振動数と等しい振動数の力をこの系に与えると<br/> この系は激しく振動し始める。この現象を共鳴または共振と呼ぶ。<br/> これについては下記もご覧ください。<br/> *[[wikipedia_ja:固有振動|ウィキペディア(固有振動)]] *[[wikipedia_ja:共鳴|ウィキペディア(共鳴)]] <br/> '''(5)ドップラー効果'''<br/> 波源に対して相対速度をもつ観測者が波の周波数を観測すると、<br/> 波源の周波数と異なる現象を、「ドップラー効果」という。<br/> 皆さんも、日ごろこの現象に遭遇しています。<br/> 救急車のサイレンは、救急車が近づいているときは高い音に聞こえ、通り過ぎた瞬間に 低い音にかわることに気付いているでしょう。これも「ドップラー効果」。<br/><br/> '''(7)音の干渉'''<br/> 音も波なので、波の重ね合わせの原理が成立つ。<br/> そのため一般の波でおこる干渉も起こる。<br/>
物理/音と音波
に戻る。
表示
本文
トーク
ソースを表示
履歴
個人用ツール
ログイン
案内
メインページ
コミュニティ・ポータル
最近の出来事
最近の更新
おまかせ表示
ヘルプ
検索
ツールボックス
リンク元
関連ページの更新状況
特別ページ一覧