Processing math: 84%

輸送問題

提供: Internet Web School

(版間での差分)
2 行: 2 行:
製品を2つの工場A1,A2で製造し3社B1,B2,B3に納入している企業がある.これら3社からの注文は表2-1の通りである.この注文に応じるため表2-2のように工場A1,A2で製品を製造する. 製造した製品を工場A1,A2からそれぞれB1,B2,B3に輸送する際の1単位当たりのコストは表2-3の通りである. 3社B1,B2,B3からの注文を充足し,かつ,輸送コストを最小にするには, 工場A1,A2から3社B1,B2,B3への輸送数をどのように配分すれば良いか.
製品を2つの工場A1,A2で製造し3社B1,B2,B3に納入している企業がある.これら3社からの注文は表2-1の通りである.この注文に応じるため表2-2のように工場A1,A2で製品を製造する. 製造した製品を工場A1,A2からそれぞれB1,B2,B3に輸送する際の1単位当たりのコストは表2-3の通りである. 3社B1,B2,B3からの注文を充足し,かつ,輸送コストを最小にするには, 工場A1,A2から3社B1,B2,B3への輸送数をどのように配分すれば良いか.
 +
$
 +
\begin{tabular}{|c|c|c|c|}
 +
\hline
 +
&Gu&Choki&Pa\\
 +
\hline
 +
Gu&0&-10&10 \\
 +
\hline
 +
Choki&10&0&-10\\
 +
\hline
 +
Pa&-10&10&0 \\
 +
\hline
 +
\end{tabular}
-
{| class="wikitable"
+
$
-
|+Food complements
+
-
|
+
-
||オレンジ
+
-
||りんご
+
-
|-
+
-
||パン
+
-
||パイ
+
-
|-
+
-
||バター
+
-
||アイスクリーム
+
-
|}
+
-
 
+
工場<math>A_i</math>から注文先<math>B_j</math>への製品の輸送量を
工場<math>A_i</math>から注文先<math>B_j</math>への製品の輸送量を

2020年11月28日 (土) 01:34時点における版

製品を2つの工場A1,A2で製造し3社B1,B2,B3に納入している企業がある.これら3社からの注文は表2-1の通りである.この注文に応じるため表2-2のように工場A1,A2で製品を製造する. 製造した製品を工場A1,A2からそれぞれB1,B2,B3に輸送する際の1単位当たりのコストは表2-3の通りである. 3社B1,B2,B3からの注文を充足し,かつ,輸送コストを最小にするには, 工場A1,A2から3社B1,B2,B3への輸送数をどのように配分すれば良いか.

\begin{tabular}{|c|c|c|c|} \hline  &Gu&Choki&Pa\\ \hlineGu&0&-10&10 \\ \hlineChoki&10&0&-10\\ \hlinePa&-10&10&0 \\ \hline  \end{tabular}

工場Aiから注文先Bjへの製品の輸送量を

xi,j( i=1,2 j=1,2,3) で表すと,

表2-1から工場A1,A2から注文先B1,B2,B3への輸送について制約条件式

x1,1+x2,1=65 x1,2+x2,2=45 x1,3+x2,3=50

を満たす. また,表2-2から工場A1,A2の製造量について制約条件式

x1,1+x1,2+x1,3=70 x2,1+x2,2+x2,3=90 

を満たす.さらに製造量は非負であるから

0

これらの制約条件の下で輸送コストの総和

{5x}_{1,1}+{7x}_{1,2}+11x_{1,3}+{10x}_{2,1}+{6x}_{2,2}+{3x}_{2,3}

の最小値を求める.この問題も生産計画と同様 線形計画法 に属する.


ファイル:輸送問題.pdfにMicrosoft Excel のソルバーを用いたこの問題の解法例を示す. 

作成したデータは以下の通りである.

ソルバーのパラメータ 入力は以下の通りである.

ソルバーによる結果は以下の通りである. x_{1,1}=65,x_{1,2}=5,x_{1,3}=0,x_{2,1}=0,x_{2,2}=40,x_{2,3}=50

のとき輸送コストの総和 x_{1,1}+7x_{1,2}+11x_{1,3}+10x_{2,1}+6x_{2,2}+3x_{2,3} が最小値750になることを示している. 表2-1,表2-2の制約条件を満たしている.

個人用ツール