物理/力と運動の法則

提供: Internet Web School

(版間での差分)
(圧力)
(圧力)
36 行: 36 行:
単位面積の面に働く力を'''圧力'''といい、気体の場合は気圧、水の場合は水圧ともいう。  <br/>
単位面積の面に働く力を'''圧力'''といい、気体の場合は気圧、水の場合は水圧ともいう。  <br/>
気体や液体で圧力が生じるのは、それらを構成する膨大な個数の分子・原子が運動していて、物体の面に衝突し、力を与えるためである。気体の場合については
気体や液体で圧力が生じるのは、それらを構成する膨大な個数の分子・原子が運動していて、物体の面に衝突し、力を与えるためである。気体の場合については
-
「7章 気体の分子運動論」で詳しく学ぶ。
+
「7章 気体の分子運動論」で詳しく学ぶ。<br/>
-
気圧や水圧は、同じ場所ならば、どのような向きの面に対しても一定である。  <br/>
+
次の法則が知られている。<br/>
-
また、下部になるほど気体や水の重さにより、圧力は大きくなる。<br/>
+
 ①気圧や水圧は、同じ場所ならば、どのような向きの面に対しても一定である。  <br/>
-
これらの法則については、運動法則が必要なので、次節で学ぶ。
+
 ②下部になるほど気体や水の重さにより、圧力は大きくなる。<br/>
 +
これらの理由については、運動法則が必要なので、次節で学ぶ。
==力の合成と分解==
==力の合成と分解==

2011年5月24日 (火) 06:49時点における版

物理3章 力と運動の法則

目次

力の性質

力は物体を動かしたり、変形させる働きがある。

の 「2.2.1 力の性質」と 「6.1.2 力による運動の変化」 を見てください。

いろいろな力

万有引力 ,重力電気力(電荷のクーロンの法則)磁気力(磁荷のクーロンの法則)弾性力(ばねなどの力))、摩擦力、その他、人間・動物の筋肉の力、機械の生み出す力、浮力、張力など、色々な力があります。リンクをとってあるものについてはクリックすると詳しい説明がありますが、この章の段階では感じだけをつかめば良いです。これらの力のいくつかはこれから詳しく学んでいきます。

力に関する法則

万有引力

2つの物体はお互いに同じ大きさの力で引き合う。地球上のすべての物体が落体運動するのは地球から、この引力で引かれているからです(地球もその物体から引かれますが、桁違いに質量が大きいので殆ど動かず、観測できません)。この力を万有引力という。その大きさや向きを与える万有引力の法則は「6節 万有引力の法則」で学ぶ。

地表の重力

通常は万有引力と地球の自転による遠心力との合力のことですが、万有引力と同じ意味で使うこともあるので注意が必要です。 地学I・地球の概観(Wikibooks)をご覧ください。

電気力、磁気力

9章で学びます。簡単な説明は、 ウィキブックス(中学校理科 第1分野) の4章をご覧ください。

作用・反作用の法則(運動の第3法則)とそれに基づく力

第一の物体が第二の物体に力を及ぼすときは、第二の物体は第一の物体に大きさは同じで逆向きの力を及ぼす、という経験則である。電磁気の力のように場を介して働く力ではこの法則が成り立たないことがある。

弾性力とフックの法則

および弾性力(ばねなどの力)

摩擦力

圧力

気体の中や液体の中におかれた物体の面は、気体や液体から力を受ける。  
単位面積の面に働く力を圧力といい、気体の場合は気圧、水の場合は水圧ともいう。  
気体や液体で圧力が生じるのは、それらを構成する膨大な個数の分子・原子が運動していて、物体の面に衝突し、力を与えるためである。気体の場合については 「7章 気体の分子運動論」で詳しく学ぶ。

次の法則が知られている。
 ①気圧や水圧は、同じ場所ならば、どのような向きの面に対しても一定である。  
 ②下部になるほど気体や水の重さにより、圧力は大きくなる。
これらの理由については、運動法則が必要なので、次節で学ぶ。

力の合成と分解

力はベクトルで表わされる

力の働きは、力の大きさと向きおよび力の作用する場所(作用点)によって決まる。そこで力は、その作用点を始点とする(束縛)ベクトルで表わされる。

力の合成と分解の法則

一つの質点に力F1、、、、Fnが同時に働いた時と、F=F1+、、、+Fn(ベクトルとしての和)という一つの力が働いたときとは、質点の運動は同一であることが実験により、確かめられています。実はこの自然の法則に合致するようにベクトルの和は定められたのです。但し力が作用する場所が異なれば働きもかわるので、作用点に注意が必要です。 逆に一つの力を2以上の力の和に分解すると物体の運動を簡単に見つけることができることがあります。これらについては

  • 力(wikipedia) の「4 力の合成と分解」を見てください。

質点の運動法則について学ぶ。2章で学んだように質点は大きさをもたない点であり、大きさをもった物体の運動の解析に比べてはるかに容易です。

運動の3法則

ニュートンは次に述べる運動の3法則と万有引力を基本法則として記述し、地上の物体の運動も惑星の運動もすべて導けることを明らかにしました。

運動の第一法則(慣性法則)

慣性系から観測すると、力を受けていない質点は等速の直線運動をするという経験則(実験や観測で確かめられた事実のこと)であり,慣性系は存在するという主張をしている法則です。

運動の第二法則(運動法則)

物体は力を受けた時、運動を変えますが、どのように変えるかを明らかにした経験則です。力の正確な定義式とも見なせます。この法則の理解には質量という概念が必要です。

質量

運動の第二法則と微分方程式

この準備のもとで運動の第2法則は

で与えられます。
この式は時間関数x(t)の時間tについての2階の微分がF/mに等しいという微分を含んだ方程式なので、微分方程式と呼ばれます。Fが力の法則などから分かると、質点の初期時刻0の位置と速度をあたえればこの方程式をといて、任意の時刻t(>=0)の質点の位置が分かり、速度や加速度も分かります。微分方程式の解法は大学で学びます。今後は特に断らないときはFは一定として議論をします。Fが時間とともに変わる時は大学で学びます。

運動量

運動の第三法則(作用・反作用の法則)

これについてはすでに3章で説明しました。

万有引力の法則

任意の2物体がお互いに相手におよぼす引力の大きさと方向を与える経験則です。 地上の物体は地球からM*g(M:質量、g:重力による加速度。両者を掛けると、運動の第2法則から力になる)の力で地球の重心(もう少し後で学ぶ。当分中心と思ってください)方向に引っ張られます。

ガリレイ変換とガリレイの相対性原理

どのような慣性系で観測しても力学の法則は同じであるという原理です。 一つの慣性系にたいして等速直線運動する観測系を考えると、力の働いてない物体はやはり、等速直線運動するので慣性系であり、運動の第2、第3法則は成立することを主張しています。




CAIテスト

個人用ツール