物理/音と音波
提供: Internet Web School
(→音の性質) |
(→音の性質) |
||
85 行: | 85 行: | ||
なお、両端とも閉じた音響管を両端閉管という。管内の空気の固有振動は | なお、両端とも閉じた音響管を両端閉管という。管内の空気の固有振動は | ||
両端を節とする定常波の振動である。<br/><br/> | 両端を節とする定常波の振動である。<br/><br/> | ||
- | '''(4)固有振動と共鳴・共振'''br/> | + | '''(4)固有振動と共鳴・共振'''<br/> |
気柱の空気の振動など、振動する系は、それぞれ固有の振動数を持つ。<br/> | 気柱の空気の振動など、振動する系は、それぞれ固有の振動数を持つ。<br/> | ||
これを系の'''固有振動'''という。<br/> | これを系の'''固有振動'''という。<br/> |
2016年6月4日 (土) 01:39時点における版
目次[非表示] |
音と音波
音波とは、狭い意味では、空気の粗密の振動が伝わっていく縦波である。
広義には、気体、液体、固体の中を伝わる縦波(粗密波)を音波という。
音波は波なので、反射、屈折、回折、干渉など、波に共通する特有の性質をもつ。
そのため、「4.1 波の性質」で述べたことは、すべて成立する。
音波の伝わり方
音波の速さ
乾燥した空気をつたわる音波の速さ V は
空気温度 t℃ が高くなると早くなり、
V=331.3+0.6t
で表せる。
液体や固体中の音波の速さは、空気中よりずっと大きい。
音速の測定や理論研究の歴史、種々の媒質中の音速については、
を参照のこと。
音の3要素
音の3要素 とは次の3つである。
(1)音の高さ;
振動数の高い音ほど、高音に聞こえる。
1オクターブ高い音とは、振動数が2倍になることをいう。
ちなみに、人間の耳に聞こえる音は、振動数が20Hzから2万Hzの音である。
可聴音という。
(2)音の強さ;
音には強く聞こえる音と弱く聞こえる音がある。
音の強弱は、媒質の密度、波の振幅と振動数によって決まる。
媒質密度と振動数が同じならば、振幅の大きな音ほど強く聞こえる。
(3)音色;
発音体が違うと振動数と強さが同じ音でも、音の感じが違う。
これを音色あるいは、ねいろという。
波の多くは、波形が正弦関数で表せないので、
振動数や振幅が同じでも、波形が異なるため音色が異なる。
音の性質
以下の(1)から(7)までの音の性質については、
- [[wikibooks_ja:高等学校理科 物理I 波/音波と振動|高等学校理科 物理I 波/音波と振]動]で学んでください。
以下には、簡単に要点を補足をします。
(1)音のうなり
振動数(または周波数)がわずかに異なる2つの音波(波)が干渉して、
振動数が中間とみなせる、
振幅がゆっくり周期的に変わる合成波を生ずる現象を言う。
(2)弦の固有振動
張った弦をこすったり、はじいて振動させると、波が両側に伝わり、
弦の両端は固定され振動しないので、固定端である。
弦におきた波は進行し、固定端で反射して、進行波との合成波は、固定された両端の変位が零の定常波となる(「1.4.6.3 定常波と進行波」を参照のこと)。
この波動の振動を、弦の固有振動、その振動数を固有振動数という。
両端の変位が零であることから、定常波動の波長 λ と弦の長さ l の間には次の関係が成立つことが分かる。
l=λ2n,(n=1.2,3,,,) 変形すると
λ=2ln,(n=1.2,3,,,)
ここで、nは定常波の腹の数。
上の式から、λ は n の関数であることがわかるので、λn とかく。
すると
λn=2ln,(n=1.2,3,,,)(1)
腹の数が1の固有振動を基本振動(1倍振動)、n≥2の固有振動を、n倍振動と呼ぶ。
進行波の速さをVとし、n倍振動数を fn 、その波長をλn とかくと、
V=fnλn
fn=V2ln(n=1.2,3,,,)(2)
が成立つ。
(3)気柱の振動
管の中の柱状の空気のことを気柱という。
管中の波は、その両端で反射し、元の波と反射波は重ねあって合成波をつくる。
この合成波は定常波になる。
その波長や周波数(振動数)は、ある固有の値しか取れない。
これらについて学ぶ。
波の変位量としてなにを用いているかで、同じ端でも自由端にも固定端にもなるので注意してくださ
い。
ウィキブックス(高等学校理科 物理I 波/音波と振動 1.3 気柱の振動)
(3.1) 気柱の固有振動
(3.2) 閉管の場合
閉管とは、一方が閉じ他端が開放されている音響管のこと。
この管の定常波は、片方の端が腹で他端が節になる。
(3.3) 開管の場合
開管とは、両端とも開放された音響管のこと。
波を空気の位置の振動とみると、両端は自由端であり、
この管の定常波は、両方とも腹になる。
波を粗密の振動とみると、両端は固定端であり、
この管の定常波は、両方とも節になる。
(3.4) 開口端補正
なお、両端とも閉じた音響管を両端閉管という。管内の空気の固有振動は
両端を節とする定常波の振動である。
(4)固有振動と共鳴・共振
気柱の空気の振動など、振動する系は、それぞれ固有の振動数を持つ。
これを系の固有振動という。
振動系の固有振動数と等しい振動数の力をこの系に与えると
この系は激しく振動し始める。この現象を共鳴または共振と呼ぶ。
これについては下記もご覧ください。
(5)ドップラー効果
波源に対して相対速度をもつ観測者が波の周波数を観測すると、
波源の周波数と異なる現象を、「ドップラー効果」という。
皆さんも、日ごろこの現象に遭遇しています。
救急車のサイレンは、救急車が近づいているときは高い音に聞こえ、通り過ぎた瞬間に
低い音にかわることに気付いているでしょう。これも「ドップラー効果」。
(7)音の干渉
音も波なので、波の重ね合わせの原理が成立つ。
そのため一般の波でおこる干渉も起こる。