物理/音と音波

提供: Internet Web School

(版間での差分)
(音の性質)
(音の性質)
109 行: 109 行:
これを「ドップラー効果」という。<br/>
これを「ドップラー効果」という。<br/>
命題
命題
-
音速を &mathjax{V_s}; とする。<br/>
+
音速を $V_s$ とする。<br/>
音源は周波数fの音を出している。<br/>
音源は周波数fの音を出している。<br/>
この音源に対して一定の相対速度 V で近づきながら、この音を観測すると<br/>
この音源に対して一定の相対速度 V で近づきながら、この音を観測すると<br/>
-
周波数は &mathjax{\frac{V_s}{V_s-V}f}; である。<br/>
+
周波数は $\frac{V_s}{V_s-V}f$ である。<br/>
-
ここで、&mathjax{V \lt 0}; は、遠ざかることを表す。<br/><br/>
+
ここで、$V \lt 0$ は、遠ざかることを表す。<br/><br/>
証明 <br/>
証明 <br/>
音源から時刻0秒から一秒間だけ音を出すとする。<br/>
音源から時刻0秒から一秒間だけ音を出すとする。<br/>
-
時刻0での、音源と観測者との距離を &mathjax{L}; とすると、<br/>
+
時刻0での、音源と観測者との距離を $L$ とすると、<br/>
-
この音が観測される時刻は $&mathjax{t_1=\frac{L}{V_s}};<br/>
+
この音が観測される時刻は $$t_1=\frac{L}{V_s}$<br/>
最後(t=1)の音は、音源と観測者の距離が $L-V$ のとき発せられるので、<br/>
最後(t=1)の音は、音源と観測者の距離が $L-V$ のとき発せられるので、<br/>
-
観測される時刻は $t_2=1+\frac{L-v}{V_s}};$ <br/>
+
観測される時刻は $t_2=1+\frac{L-v}{V_s}$$ <br/>
この間にf回の振動が観測されるので、一秒間あたりの振動数(周波数)は<br/>
この間にf回の振動が観測されるので、一秒間あたりの振動数(周波数)は<br/>
-
&mathjax{\frac{f}{t_2-t_1}=\frac{V_s}{V_s-V}f};<br/><br/>
+
$\frac{f}{t_2-t_1}=\frac{V_s}{V_s-V}f$<br/><br/>
'''(7)音の干渉'''<br/>
'''(7)音の干渉'''<br/>
音も波なので、波の重ね合わせの原理が成立つ。<br/>
音も波なので、波の重ね合わせの原理が成立つ。<br/>
そのため一般の波でおこる干渉も起こる。<br/>
そのため一般の波でおこる干渉も起こる。<br/>

2016年8月2日 (火) 10:59時点における版

目次

音と音波

音波とは、狭い意味では、空気の粗密の振動が伝わっていく縦波である。
広義には、気体、液体、固体の中を伝わる縦波(粗密波)を音波という。
音波は波なので、反射、屈折、回折、干渉など、波に共通する特有の性質をもつ。
そのため、「4.1 波の性質」で述べたことは、すべて成立する。

音波の伝わり方

音波の速さ

乾燥した空気をつたわる音波の速さ $V$ は
空気温度 t℃ が高くなると早くなり、
$V=331.3+0.6 t$
で表せる。
液体や固体中の音波の速さは、空気中よりずっと大きい。
音速の測定や理論研究の歴史、種々の媒質中の音速については、

を参照のこと。

音の3要素

音の3要素 とは次の3つである。

(1)音の高さ;
振動数の高い音ほど、高音に聞こえる。
1オクターブ高い音とは、振動数が2倍になることをいう。
ちなみに、人間の耳に聞こえる音は、振動数が20Hzから2万Hzの音である。
可聴音という。
(2)音の強さ;
音には強く聞こえる音と弱く聞こえる音がある。
音の強弱は、媒質の密度、波の振幅と振動数によって決まる。
媒質密度と振動数が同じならば、振幅の大きな音ほど強く聞こえる。
(3)音色;
発音体が違うと振動数と強さが同じ音でも、音の感じが違う。
これを音色あるいは、ねいろという。
波の多くは、波形が正弦関数で表せないので、
振動数や振幅が同じでも、波形が異なるため音色が異なる。

音の性質

以下の(1)から(7)までの音の性質については、

  • [[wikibooks_ja:高等学校理科 物理I 波/音波と振動|高等学校理科 物理I 波/音波と振]動]で学んでください。

以下には、簡単に要点を補足をします。

(1)音のうなり
振動数(または周波数)がわずかに異なる2つの音波(波)が干渉して、
振動数が中間とみなせる、
振幅がゆっくり周期的に変わる合成波を生ずる現象を言う。


(2)発音体の振動(その1)。弦の固有振動
張った弦をこすったり、はじいて振動させると、波が起き、両側に進行し、固定端で反射する。
反射波と進行波は重なり合って合成波である定常波ができる(注参照)。
弦の両端は固定され振動しないので、定常波の節になる。

この定常波の振動を、弦の固有振動、その振動数を固有振動数という。
(2-1)定常波の波長
両端の変位が零であることから、定常波動の波長 $\lambda$ と弦の長さ $l$ の間には次の関係が成立つことが分かる。
$l=\frac{\lambda}{2}n,\quad (n=1.2,3,,,)$ 変形すると
$\lambda=\frac{2l}{n},\quad (n=1.2,3,,,)$
ここで、nは定常波の腹の数。
上の式から、$\lambda$ は n の関数であることがわかるので、$\lambda_n$ とかく。 すると $\lambda_n=\frac{2l}{n},\quad (n=1.2,3,,,) \qquad \qquad (1)$
腹の数が1の固有振動を基本振動(1倍振動)、$n \geq 2$の固有振動を、n倍振動と呼ぶ。

ファイル:GENPHY00010402-01.jpg
図 弦の固有振動

進行波の速さをVとし、n倍振動数を $f_n$ 、その波長を$\lambda_n$ とかくと、 $V=f_n \lambda_n$ 
$f_n =\frac{V}{2l}n \quad (n=1.2,3,,,) \qquad \qquad (2)$
が成立つ。

(注)「1.4.6.3 定常波と進行波」を参照のこと。

(2-2)弦を伝わる波の速さ
未完
(3)発音体の振動(その2)。気柱の振動
管の中の柱状の空気のことを気柱という。
管中の波は、その両端で反射し、元の波と反射波は重ねあって合成波をつくる。
この合成波は定常波になる。
その波長や周波数(振動数)は、ある固有の値しか取れない。
これらについて学ぶ。
波の変位量としてなにを用いているかで、同じ端でも自由端にも固定端にもなるので注意してくださ

い。
ウィキブックス(高等学校理科 物理I 波/音波と振動 1.3 気柱の振動)
$\quad $(3.1) 気柱の固有振動
$\quad $(3.2) 閉管の場合
$\qquad $ 閉管とは、一方が閉じ他端が開放されている音響管のこと。
$\qquad $ この管の定常波は、片方の端が腹で他端が節になる。
$\quad$(3.3) 開管の場合
$\qquad$ 開管とは、両端とも開放された音響管のこと。
$\qquad$ 波を空気の位置の振動とみると、両端は自由端であり、
$\qquad$ この管の定常波は、両方とも腹になる。
$\qquad$ 波を粗密の振動とみると、両端は固定端であり、
$\qquad$ この管の定常波は、両方とも節になる。
$\quad$(3.4) 開口端補正

なお、両端とも閉じた音響管を両端閉管という。管内の空気の固有振動は 両端を節とする定常波の振動である。


(4)固有振動と共鳴・共振
気柱の空気の振動など、振動する系は、それぞれ固有の振動数を持つ。
これを系の固有振動という。
振動系の固有振動数と等しい振動数の力をこの系に与えると
この系は激しく振動し始める。この現象を共鳴または共振と呼ぶ。
これについては下記もご覧ください。


(5)ドップラー効果
皆さんも、日ごろ
救急車のサイレンは、近づいているときは高い音に聞こえ、通り過ぎた瞬間に
低い音にかわることに気付いているでしょう。
一般に、音源の音を、音源に対し動いている人が聞くと、 元の音より高い周波数(=振動数)や低い周波数に聞こえる。 これを「ドップラー効果」という。
命題 音速を $V_s$ とする。
音源は周波数fの音を出している。
この音源に対して一定の相対速度 V で近づきながら、この音を観測すると
周波数は $\frac{V_s}{V_s-V}f$ である。
ここで、$V \lt 0$ は、遠ざかることを表す。

証明 
音源から時刻0秒から一秒間だけ音を出すとする。
時刻0での、音源と観測者との距離を $L$ とすると、
この音が観測される時刻は $$t_1=\frac{L}{V_s}$
最後(t=1)の音は、音源と観測者の距離が $L-V$ のとき発せられるので、
観測される時刻は $t_2=1+\frac{L-v}{V_s}$$ 
この間にf回の振動が観測されるので、一秒間あたりの振動数(周波数)は
$\frac{f}{t_2-t_1}=\frac{V_s}{V_s-V}f$

(7)音の干渉
音も波なので、波の重ね合わせの原理が成立つ。
そのため一般の波でおこる干渉も起こる。

個人用ツール