物理/エネルギーと保存則(その2)

提供: Internet Web School

(版間での差分)
Moderator (トーク | 投稿記録)
(ページの作成: 物理力学エネルギーと保存則(その2) ==運動量と保存則== ===運動量と力積 …)
次の差分→

2016年1月23日 (土) 15:52時点における版

物理力学エネルギーと保存則(その2)

運動量と保存則

運動量と力積 (momentum or linear momentum and Impulse)

質点に力$\vec{F}(t)$が作用しているとする。
運動の第2法則$\vec{F}(t)=\frac{d\vec{p}(t)}{dt}$ の両辺を
時間に関して$t_1$から $t_2$まで積分してみよう。ここで$\vec{p}(t)=m\vec{v}(t)$は質点の運動量。
すると、
$\int_{t_1}^{t_2}\vec{F}(t)dt=\vec{p}(t_2)-\vec{p}(t_1)$
となる。
質点に作用する力を時間で積分した$\int_{t_1}^{t_2}\vec{F}(t)dt$を力積と呼ぶ。
力積は、運動量の変化に等しい。

質点系の運動量は、質点系の各質点の運動量の和で定義する。
質点系の場合も、各質点の力積の和(質点系の力積)は質点系の運動量の変化に等しいことが、
運動の第2法則から導ける。

運動量保存則

質点の場合、それに作用する外力の総和が零ならば、運動量は保存される(一定である)。
次のように質点系にも拡張できる。
運動量保存則( law of conservation of momentum )
質点系に作用する外力のベクトル和が零ならば、
内力(質点系内の質点間に働く力)があっても、
運動量は保存される。
証明;
質点系の質点数をN個とする。
質点系の各質点の位置を$\vec{r_i}$、質量を$m_i $とし、
質点$m_i$ に作用する外力を$\vec{f_i}$、
$m_i$ に、質点系の他の質点$m_j $から作用する内力を
$\vec{f_{ij}}$とする($i,j=1 \ldots N$)。
すると、各質点に対して、運動の第2法則により、
$\frac{d\vec{p}_i(t)}{dt}=\vec{f_i}+\sum_{j\neq i}\vec{f_{ij}} $ 
上の式を$i=1 \ldots N$について加え合わせると、
$\frac{d}{dt} \sum_i{\vec{p}_i(t)} =\sum_{i}(\vec{f_i}+\sum_{j\neq i}\vec{f_{ij}})$
$=\sum_{i}\vec{f_i}+\sum_{i}\sum_{j\neq i}\vec{f_{ij}}$
外力のベクトル和が零という仮定から、
$=\sum_{i}\sum_{j\neq i}\vec{f_{ij}}$
$=\sum_{i<j}(\vec{f_{ij}}+\vec{f_{ji}})$
上式の$\sum_{i<j}$は、すべての異なる$i<j$の組み合わせに関して和をとる意味である。
作用反作用の法則により、$ \vec{f_{ij}}+\vec{f_{ji}}=0$()なので、
$\sum_{i<j}(\vec{f_{ij}}+\vec{f_{ji}})=0$
故に、
$\frac{d}{dt} \sum_i{\vec{p}_i(t)} =0 $
が得られる。
$\sum_i{\vec{p}_i(t)}$は時不変であり、保存される事が示された。

個人用ツール