物理/多変数解析学

提供: Internet Web School

(版間での差分)
(微分(全微分) )
(微分(全微分) )
162 行: 162 行:
$\textbf{e} \neq \textbf{0}$ の時;<br/>
$\textbf{e} \neq \textbf{0}$ の時;<br/>
方向微分の定義から<br/>
方向微分の定義から<br/>
-
$ D_{\textbf{e}}f(x_0,y_0)=\lim_{t\to 0,t\neq 0}\frac{f\bigl((x_0,y_0)^{T} + t\textbf{e}\bigr)-f\bigl( (x_0,y_0)^{T} \bigr)}{t}  \qquad (a)$<br/>
+
$ D_{\textbf{e}}f(x_0,y_0)=\lim_{t\to 0,t\neq 0}\frac{f\Bigl((x_0,y_0)^{T} + t\textbf{e}\Bigr)-f\Bigl( (x_0,y_0)^{T} \Bigr)}{t}  \qquad (a)$<br/>
他方、fが $(x_0,y_0)$ で全微分可能なので、<br/>
他方、fが $(x_0,y_0)$ で全微分可能なので、<br/>
-
$ f\bigl( (x_0,y_0)^{T} + t\textbf{e}\bigr)-f( (x_0,y_0)^{T} )=Df(x_0,y_0)t\textbf{e}+o(\|t\textbf{e}\|)  \qquad \qquad (b)$<br/>
+
$ f\Bigl( (x_0,y_0)^{T} + t\textbf{e}\Bigr)-f( (x_0,y_0)^{T} )=Df(x_0,y_0)t\textbf{e}+o(\|t\textbf{e}\|)  \qquad \qquad (b)$<br/>
式(b)を式(a)の右辺の代入すると、<br/>
式(b)を式(a)の右辺の代入すると、<br/>
-
$D_{\textbf{e}}f(x_0,y_0)=\lim_{t\to 0,t\neq 0}\bigl(Df(x_0,y_0)\textbf{e}+\frac{o(\|t\textbf{e}\|}{t}\bigr)=Df(x_0,y_0)\textbf{e}$<br/>
+
$D_{\textbf{e}}f(x_0,y_0)=\lim_{t\to 0,t\neq 0}\Bigl(Df(x_0,y_0)\textbf{e}+\frac{o(\|t\textbf{e}\|}{t}\Bigr)=Df(x_0,y_0)\textbf{e}$<br/>
これで2)が示せた。<br/>
これで2)が示せた。<br/>
証明終わり<br/><br/>
証明終わり<br/><br/>
fが微分可能ならば、<br/>
fが微分可能ならば、<br/>
fの点$(x_0,y_0)$での値と、その近くの点$(x_0+h,y_0+k)$での値の差$f(x_0+h,y_0+k)-f(x_0,y_0)$ は、<br/>
fの点$(x_0,y_0)$での値と、その近くの点$(x_0+h,y_0+k)$での値の差$f(x_0+h,y_0+k)-f(x_0,y_0)$ は、<br/>
-
$ c_1 h + c_2 k = (c_1,c_2)(h,k)^{t}=\bigl(f_{x}(x_0,y_0),f_{y}(x_0,y_0)\bigr)(h,k)^{t}$<br/>
+
$ c_1 h + c_2 k = (c_1,c_2)(h,k)^{t}=\Bigl(f_{x}(x_0,y_0),f_{y}(x_0,y_0)\Bigr)(h,k)^{t}$<br/>
で大変精度よく近似できることを意味する。<br/>
で大変精度よく近似できることを意味する。<br/>
定理2;<br/>
定理2;<br/>
178 行: 178 行:
他方が、$(x_0,y_0)$ を中心とする半径$\delta$ の開球 $U_{\delta}(x_0,y_0)$上で存在し、$(x_0,y_0)$ で連続ならば、<br/>
他方が、$(x_0,y_0)$ を中心とする半径$\delta$ の開球 $U_{\delta}(x_0,y_0)$上で存在し、$(x_0,y_0)$ で連続ならば、<br/>
$f(x,y)$ は$(x_0,y_0)$ において、微分可能である。<br/>
$f(x,y)$ は$(x_0,y_0)$ において、微分可能である。<br/>
-
(注)$U_{\delta}(x_0,y_0)\triangleq \{\textbf{x}\in {\bf R^2}|\ \|\textbf{x}\|_{2}\lt \delta \}$<br/>
+
(注)$U_{\delta}(x_0,y_0)\triangleq \{(x,y)^{T}\in {\bf R^2}|\ \|(x,y)^{T}-(x_0,y_0)^{T}\|_{2}\lt \delta \}$<br/>
$\delta$はどんなに小さくてもよい。<br/>
$\delta$はどんなに小さくてもよい。<br/>
証明<br/>
証明<br/>
$f_{x}$が $U_{\delta}(x_0,y_0)$上で存在し、$(x_0,y_0)$ で連続と仮定して、証明すればよい。(他の場合も同様に議論できるから)。<br/>
$f_{x}$が $U_{\delta}(x_0,y_0)$上で存在し、$(x_0,y_0)$ で連続と仮定して、証明すればよい。(他の場合も同様に議論できるから)。<br/>
そこで、$f_{x}$が$U_{\delta}(x_0,y_0)$上で存在し、$(x_0,y_0)$ で連続としよう。<br/>
そこで、$f_{x}$が$U_{\delta}(x_0,y_0)$上で存在し、$(x_0,y_0)$ で連続としよう。<br/>
-
$\|\textbf{x}\|_{2}\lt \delta $ を満たす任意の2次元ベクトルをとる。<br/>
+
$\|\textbf{h}\|_{2}\lt \delta $ を満たす任意の2次元ベクトル$\textbf{h}=(h_{1},h_{2})^{T}$をとる。<br/>
 +
$f((x,y)^{T}+\textbf{h})-f((x,y)^{T}) $<br/>
 +
$= \Bigl(f\bigl((x+h_1,y+h_2)^{T}\bigr)-f\bigl((x,y+h_2)^{T}\bigr)\Bigr)+\Bigl(f\bigl((x,y+h_2)^{T}\bigr)-f\bigl((x,y)^{T}\bigr)\Bigr)  \qquad \qquad (a)$<br/>
 +
変数$h_1$の関数<br/>
 +
$\phi(h_1)\triangleq f\bigl((x+h_1,y+h_2)^{T}\bigr) \qquad (b)$<br/>
 +
を考えると、$\phi(0)=f\bigl((x,y+h_2)^{T}\bigr)$であり、<br/>
 +
$f_{x}$が$U_{\delta}(x_0,y_0)$上で存在するので、微分可能な関数である。<br/>
 +
一変数の微分可能な関数の平均値の定理から、ある正数$\theta \in (0,1)$ が存在して、<br/>
 +
$\phi(h_1)-\phi(0)=h_1{\phi}'(\theta h_1)$<br/>
 +
式(b)を用いて、この式を関数fを用いて表すと<br/>
 +
$f\bigl((x+h_1,y+h_2)^{T}\bigr)-f\bigl((x,y+h_2)^{T}\bigr)=h_{1}D_{x_1}f\bigl((x+\theta h_1,y+h_2)^{T}\bigr)  \qquad (c)$<br/>
 +
式(a)の右辺の第2項$f\bigl((x,y+h_2)^{T}\bigr)-f\bigl((x,y)^{T}\bigr)$ を考える<br/>
 +
関数fの偏微分$D_{y}f$が$(x_0,y_0)$で存在することから、<br/>
 +
$f\bigl((x,y+h_2)^{T}\bigr)-f\bigl((x,y)^{T}\bigr)=h_2D_{y}f(x_0,y_0)+0(h_2)\qqad (d)$<br/>
 +
ここで$0(h_2)$は、$\lim_{h_2\to 0,h_2\neq 0}\frac{0(h_2)}{h_2}=0$<br/>
 +
式(a)の右辺に、式 (c),(d)を代入すると、<br/>
 +
$f((x+h_1,y+h_2)^{T})-f((x,y)^{T}) $<br/>
 +
$=h_{1}D_{x}f\bigl((x+\theta h_1,y+h_2)^{T}+h_2D_{y}f(x_0,y_0)+0(h_2)$<br/>
 +
$D_{x}f$は$(
189 行: 207 行:
-
(注)この定理はn変数関数の場合にも、次のように拡張できる。
+
(注)この定理はn変数関数の場合にも、次のように拡張できる。<br/>
系;$C^{1}$級の関数は微分可能<br/>
系;$C^{1}$級の関数は微分可能<br/>
196 行: 214 行:
共に、点$(\xi_{1}^{0},\xi_{2}^{0})$ において微分可能、<br/>
共に、点$(\xi_{1}^{0},\xi_{2}^{0})$ において微分可能、<br/>
2変数の実関数 $f(x_1,x_2)$ が、<br/>
2変数の実関数 $f(x_1,x_2)$ が、<br/>
-
点 $(x_{1}^{0},x_{2}^0)=\bigl( x_{1}(\xi_{1}^{0},\xi_{2}^{0}),x_{2}(\xi_{1}^{0},\xi_{2}^{0})\bigr) $ において微分可能とする。<br/>
+
点 $(x_{1}^{0},x_{2}^0)=\Bigl( x_{1}(\xi_{1}^{0},\xi_{2}^{0}),x_{2}(\xi_{1}^{0},\xi_{2}^{0})\Bigr) $ において微分可能とする。<br/>
すると、合成関数<br/>
すると、合成関数<br/>
-
$\qquad \qquad g(\xi_{1},\xi_{2})\triangleq f\bigl( x_{1}(\xi_{1},\xi_{2}),x_{2}(\xi_{1},\xi_{2})\bigr) $<br/>
+
$\qquad \qquad g(\xi_{1},\xi_{2})\triangleq f\Bigl( x_{1}(\xi_{1},\xi_{2}),x_{2}(\xi_{1},\xi_{2})\Bigr) $<br/>
は、$(\xi_{1}^{0},\xi_{2}^{0})$ で微分可能であり、<br/>
は、$(\xi_{1}^{0},\xi_{2}^{0})$ で微分可能であり、<br/>
$g_{\xi_{1}}(\xi_{1}^{0},\xi_{2}^{0})$<br/>
$g_{\xi_{1}}(\xi_{1}^{0},\xi_{2}^{0})$<br/>

2017年12月10日 (日) 15:56時点における版

目次

「9.1 多変数解析学」 

本章の冒頭の偏微分の導入部については下記の本も参考にしてください。

それ以降の内容については、ウィキブックスには殆どないため、
このテクストで今後叙述する予定です。

多変数の実数値関数の微分

${\bf R^n}=\{(x_1,x_2,,,x_n) \mid x_i\in{\bf R},i=1,2,\cdots n\}$ の開区間
$I^n=\prod_{i=1}^{n}(a_i,b_i)$上で定義された実関数 $y=f(x_1,x_2,,,x_n)$ を考える。
一変数関数の議論から類推するために
以後、$\vec{x}:=(x_1,x_2,,,x_n)$とおき、 $y=f(\vec{x})$ と書くこともある。
$I^n \,$上で定義された実数値関数 $\ y=f(\vec{x})=f(x_1,x_2,,,x_n)\,$ の微分について説明する。
一変数の微分から類推すると
微小なベクトル $\vec h=(h_1,h_2,,,h_n)$ を考え、極限
$\lim_{\vec h \to 0,\vec h\neq 0}\frac{f(\vec x + \vec h)-f(\vec x)}{{\bf h} }$
が存在するとき、関数fは微分可能と定義することが考えられる。
しかし残念ながら、
$\vec h$はn次元ベクトルなので、割り算は不可能でありこの定義は無効である。

偏微分

関数$f$ の変数 $\vec{x}$ の第i成分 $x_i$ だけを変数とし、
他の変数は任意の実数に固定$\Bigl(x_j = a_j \quad (j\neq i)\Bigr)$して得られる関数
$\phi_{x_j=a_j,j\neq i}(x_i)\triangleq f(a_1,a_2,,,a_{i-1},x_i,a_{i+1},,,a_n) $
を考える。
この関数は、一変数なので、任意の点$x_i $ での微分係数 
$\frac{d\phi_{x_j=a_j,j\neq i}}{dx_i}(x_i)\triangleq \lim_{ h \to 0, h\neq 0}\frac{\phi_{x_j=a_j,j\neq i}(x_i+h)-\phi_{x_j=a_j,j\neq i}(x_i)}{\bf h}$
$=\lim_{ h \to 0, h\neq 0}\frac{ f(a_1,a_2,,,a_{i-1},x_{i}+h,a_{i+1},,,a_n)-f(a_1,a_2,,,a_{i-1},x_{i},a_{i+1},,,a_n)}{\bf h}$
を考えることができる。

定義(偏微分)
もし、一変数関数 $\phi_{x_j=a_j,j\neq i}(x_i)=f(a_1,a_2,,,a_{i-1},x_i,a_{i+1},,,a_n)$ が、ある点$x_i=a_i$で微分可能ならば、
関数fは、点$\vec a = (a_1.a_2,,,,a_n)$で,$x_i$ について偏微分可能であると言い,
$\frac{\partial f}{\partial x_i}(\vec a) \triangleq \frac{d\phi_{x_j=a_j,j\neq i}}{dx_i}(a_i)$
を、$f(\vec{x})$ の 点$\vec a$ での変数 $x_i$  についての偏微分係数という。

定義(偏導関数)
$f(\vec{x})$  がどの点$\vec{x}$でも $x_i$ に関して偏微分可能であるならば、
任意の点$x_i$ にその点の偏微分係数$\frac{d\phi^i}{dx_i}(x_i)$を対応させると、新しい関数が得られる。
これを、$f(\vec{x})$  の $x_i$ に関する偏導関数といい、記号
$f_{x_{i}}(\vec{x}),\quad D_{x_i}f(\vec{x}),\quad \frac{\partial f}{\partial x_i} (\vec{x}),\quad \partial f/\partial x_i$
などで表示する。

以後、簡単のために2変数 x.y の関数に限定して議論する。 定理(合成関数の微分)
$R^2$ から $R$ への関数$f(x,y)$ と
$R$ から $R$ への関数$g(t)$ の合成関数 
$h(x,y)=g(f(x,y))$ 
を考える。
もし、$f(x,y)$ が $(x_0,y_0)$ で、xに関して偏微分可能で,
$\qquad g(t)$ が、$t_0=f(x_0,y_0)$ において微分可能ならば、
$h(x,y)=g(f(x,y)$ は $(x_0,y_0)$ で、xに関して偏微分可能であり,
$h_{x}(x_0,y_0)=g'(t_0)f_{x}(x_0,y_0) \qquad \qquad ()$
証明
yを $ y_0 $ に固定して考えると、一変数関数の合成関数の微分になるので、合成関数の微分公式を適用すればよい。

 平均値の定理 

定理
f(x,y) を
$(x_0,y_0)$ のな近傍 U 上で、xについて偏微分可能とする。
もし$(x,y)$ を近傍Uの点ならば
$x_0$ と $x$ の間の $\xi$ が存在して、
$f(x,y) - f(x,y_0)-\bigl(f(x_0,y) - f(x_0,y_0) \bigr)= (x-x_0)\bigl(f_{x}(\xi,y)-f_{x}(\xi,y_0)\bigr) \qquad ()$
(注)例えば、中心$(x_0,y_0)$、半径rの小さな開球体$S_{r}(x_0,y_0)\triangleq \{(x,y)\in R^2 | \|(x,y) - (x_0,y_0) \| \lt r\} $ など。
証明
$ \phi(x)\triangleq f(x,y) - f(x,y_0)$ とおくと、
式()の左辺$ = \phi(x) - \phi(x_0)$
$\quad \phi(x) $ は、$x_0$ の近傍で微分可能なので、平均値の定理から、
$\quad x_0$ と $x$ の間の $\xi$ が存在して、
$= (x-x_0){\phi}'(\xi) = (x-x_0)\bigl(f_{x}(\xi,y)-f_{x}(\xi,y_0)\bigr) $

定理 
f(x,y) を
$(x_0,y_0)$ のな近傍 U 上で、xについて偏微分可能とする。
もし$(x,y)=(x_0+h,y_0+k)$ を近傍Uの点ならば
$f(x,y) = f(x_0,y_0) + hf_{x}(x_0 + h\theta,y) + kf_{y}(x_0,y_0+ k\theta)$
を満たす、$\theta=\theta(h,k) \in (0,1)$ が存在する。
証明
$ g(t) \triangleq f(x_0+ht,y) + f(x_0,y_0+kt) $ というtの関数を導入する。
すると、
$g(1)-g(0) = f(x,y)+f(x_0,y)-\bigl(f(x_0,y)+f(x_0,y_0) \bigr)$
$\qquad \qquad =f(x,y) - f(x_0,y_0)$
関数 $g(t)$ は、閉区間[0,1] を含む開区間上で微分可能なので、
一変数の微分可能関数の平均値の定理から、
ある数 $\theta \in (0,1)$ が存在して、
$g(1)-g(0) = g'(\theta)(1-0) = g'(\theta) \qquad \qquad (a)$
故に、$ f(x,y) - f(x_0,y_0) = g(1)-g(0) = g'(\theta)$
$\qquad $ 関数gの微分は,一変数関数の合成関数の微分公式から
$\qquad g'(t) = f_{x}(x_0+ht,y)h + f_{y}(x_0,y_0+kt)k \qquad (b)$
式(a)、(b) から
$ f(x,y) - f(x_0,y_0) = f_{x}(x_0+h\theta,y)h + f_{y}(x_0,y_0+k\theta)k \qquad (b)$
証明終わり

 高階偏微分

(1)二階偏微分
定義 二階偏微分

次は、大変有用な定理である。
定理
${\bf R^n}$の開集合Uで定義された実数値関数fに対し、
点$\textbf{a} \in U$ の近傍W(注参照)で
$ \qquad \qquad f_{x_i,x_j} \ f_{x_j,x_i}$
が共に存在し、$\textbf{a}$において共に連続ならば、
$ \qquad \qquad f_{x_i,x_j}(\textbf{a}) = f_{x_j,x_i}(\textbf{a})$

方向微分

$\vec{e_i}$ を直交座標系の$x_i$座標軸の正方向の方向・向きを持つ単位長さのベクトルとする(第i直交座標ベクトルと呼ぼう)。
多変数関数$y=f(x_1,x_2,,,x_n)$の、点$\vec x = (x_1,x_2,,,x_n)$での偏微分係数 $\frac{\partial f}{\partial x_i}(x)$ は、
点$\vec x $ を、第i座標(座標ベクトル$\vec{e}_i$)に平行に無限に小さい距離移動させるときの、関数fの変化率とみなせる。
式で書くと
$\frac{\partial f}{\partial x_i}(x) = \lim_{h\to 0,h\neq 0}\frac{f(\vec x + h\vec{e}_i)-f(\vec x )}{h}$

このように考えると、点$\vec x = (x_1,x_2,,,x_n)$を、座標ベクトル$\vec{e}_i$に平行ではなく、
任意に指定するベクトル$\vec a$に平行に微小量動かすときの関数fの変化率を考えることもできることが分かるだろう。

定義 方向微分
関数$y=f(x_1,x_2,,,x_n)$の、点$\vec x = (x_1,x_2,,,x_n)$での,$\vec a$ 方向の微分係数とは、
$\lim_{h\to 0,h\neq 0}\frac{f(\vec x + h\vec a)-f(\vec x )}{h}$
のことで、
$\frac{\partial f}{\partial \vec{a}}(x),\quad f_{\vec a}(x),\quad D_{\vec a}f(x)$
などと書く。

命題
(1) $\vec{e_i}$ 方向の微分は、$\vec{e_i}$ 座標軸($x_i$座標軸)に関する偏微分である。
ここで、$\vec{e_i}$ は$x_i$座標軸の正方向向きの単位長さのベクトル。
式で書くと、
$\frac{\partial f}{\partial \vec{e_i}}(x) = \frac{\partial f}{\partial x_i}(x) $
(2)$\alpha$ を任意の実数とすると
$\frac{\partial f}{\partial \alpha \vec{e_i}}(x) = \alpha \frac{\partial f}{\partial x_i}(x) $

微分(全微分) 

この§も、2変数関数で説明する。
二変数関数の微分可能性をどう定義したらよいだろうか?
一変数関数の微分の場合、それと同等の条件はいくつか知られているが、
その中で二変数関数に容易に拡張できるものを採用するのが自然である。
1.4.1.1 微分係数の意味 の命題の条件 3)の式(5)が、それに該当する。

定義1;微分可能性(全微分可能性)
関数f(x,y)が、或る開集合U上で定義されているとする。
fが 点$(x_0,y_0)\in U$ で微分可能(あるいは全微分可能)とは、
ある定数$c_1,\ c_2$が存在して、
$f(x,y) = f(x_0,y_0) + c_{1}(x-x_0) + c_{2}(y-y_0) + \delta(x,y;x_o,y_0)\qquad (a)$
ここで、$\lim_{(x,y)\to (x_0,y_0)}\delta(x,y;x_o,y_0)/\|(x,y)-(x_0,y_0) \| = 0 \qquad (b)$
この時、 $\textbf{c} \triangleq (c_1, c_2)$ を、fの点$(x_0,y_0)$における導値(derivative)または微分係数といい、
$f'(x_0,y_0), \ Df(x_0,y_0)$ などと書く。

(注)このテキストの「1.4.3  一般のノルムの定義とノルムの同等性」から、
ノルムとしては、どのp-ノルムを用いても同等である。

定理1
fが 点$(x_0,y_0)\in U$ で微分可能ならば、

1)fは$(x_0,y_0)$ で偏微分可能で、
式(a)の$ c_{1}, c_{2} $ はそれぞれ、$(x_0,y_0)$ でのx、yに関する偏微分係数である。
すなわち、$f'(x_0,y_0)=(f_{x}(x_0,y_0),f_{y}(x_0,y_0))$
2)$\textbf{e}$ を任意のベクトルとすると、
fは$(x_0,y_0)$ で$\textbf{e}$方向に微分可能で、
$ D_{\textbf{e}}f(x_0,y_0)=Df(x_0,y_0)\textbf{e}$
証明
1)を示そう。
式(a) で、$y=y_0$ と固定すると
$f(x,y_0) = f(x_0,y_0) + c_{1}(x-x_0) + \delta(x,y_0;x_o,y_0)\qquad (c)$
$\lim_{(x,y_0) \to (x_0,y_0)}\delta(x,y_0;x_o,y_0)/\|(x,y_0)-(x_0,y_0) \| $
$= \lim_{x \to x_0}\delta(x,y_0;x_o,y_0)/|x - x_0| = 0 \qquad  \qquad \qquad (d)$
式(c)の両辺を、$x-x_0(\neq 0)$ で割り、整頓すると、
$ \frac{f(x,y_0) - f(x_0,y_0) - c_{1}(x-x_0)}{x-x_0)}=\frac{\delta(x,y_0;x_o,y_0)}{x-x_0}$
この式の両辺の極限$x\to x_0$をとると、
$\lim_{x\to x_0x\neq x_0}\frac{f(x,y_0) - f(x_0,y_0) }{x-x_0} = c_{1} $
を得る。
この左辺は、xに関する偏微分$\frac{\partial f}{\partial x}(x_0,y_0)$である。
式(a) で、$x=x_0$ と固定すると,同様の議論で、
$c_2=\frac{\partial f}{\partial y}(x_0,y_0)$ を得る。
1)の証明終わり
2)を証明しよう。
$\textbf{e} = \textbf{0}$ の時は、$D_{\textbf{e}}f(x_0,y_0)=0$であることは、方向微分の定義から直ちにわかるので、2)は成り立つ。
$\textbf{e} \neq \textbf{0}$ の時;
方向微分の定義から
$ D_{\textbf{e}}f(x_0,y_0)=\lim_{t\to 0,t\neq 0}\frac{f\Bigl((x_0,y_0)^{T} + t\textbf{e}\Bigr)-f\Bigl( (x_0,y_0)^{T} \Bigr)}{t} \qquad (a)$
他方、fが $(x_0,y_0)$ で全微分可能なので、
$ f\Bigl( (x_0,y_0)^{T} + t\textbf{e}\Bigr)-f( (x_0,y_0)^{T} )=Df(x_0,y_0)t\textbf{e}+o(\|t\textbf{e}\|) \qquad \qquad (b)$
式(b)を式(a)の右辺の代入すると、
$D_{\textbf{e}}f(x_0,y_0)=\lim_{t\to 0,t\neq 0}\Bigl(Df(x_0,y_0)\textbf{e}+\frac{o(\|t\textbf{e}\|}{t}\Bigr)=Df(x_0,y_0)\textbf{e}$
これで2)が示せた。
証明終わり

fが微分可能ならば、
fの点$(x_0,y_0)$での値と、その近くの点$(x_0+h,y_0+k)$での値の差$f(x_0+h,y_0+k)-f(x_0,y_0)$ は、
$ c_1 h + c_2 k = (c_1,c_2)(h,k)^{t}=\Bigl(f_{x}(x_0,y_0),f_{y}(x_0,y_0)\Bigr)(h,k)^{t}$
で大変精度よく近似できることを意味する。
定理2;
2変数関数関数 $f(x,y)$ を考える。
もし、偏導関数 $f_{x},f_{y}$ の少なくとも一方が $(x_0,y_0)$ で存在し、 他方が、$(x_0,y_0)$ を中心とする半径$\delta$ の開球 $U_{\delta}(x_0,y_0)$上で存在し、$(x_0,y_0)$ で連続ならば、
$f(x,y)$ は$(x_0,y_0)$ において、微分可能である。
(注)$U_{\delta}(x_0,y_0)\triangleq \{(x,y)^{T}\in {\bf R^2}|\ \|(x,y)^{T}-(x_0,y_0)^{T}\|_{2}\lt \delta \}$
$\delta$はどんなに小さくてもよい。
証明
$f_{x}$が $U_{\delta}(x_0,y_0)$上で存在し、$(x_0,y_0)$ で連続と仮定して、証明すればよい。(他の場合も同様に議論できるから)。
そこで、$f_{x}$が$U_{\delta}(x_0,y_0)$上で存在し、$(x_0,y_0)$ で連続としよう。
$\|\textbf{h}\|_{2}\lt \delta $ を満たす任意の2次元ベクトル$\textbf{h}=(h_{1},h_{2})^{T}$をとる。
$f((x,y)^{T}+\textbf{h})-f((x,y)^{T}) $
$= \Bigl(f\bigl((x+h_1,y+h_2)^{T}\bigr)-f\bigl((x,y+h_2)^{T}\bigr)\Bigr)+\Bigl(f\bigl((x,y+h_2)^{T}\bigr)-f\bigl((x,y)^{T}\bigr)\Bigr) \qquad \qquad (a)$
変数$h_1$の関数
$\phi(h_1)\triangleq f\bigl((x+h_1,y+h_2)^{T}\bigr) \qquad (b)$
を考えると、$\phi(0)=f\bigl((x,y+h_2)^{T}\bigr)$であり、
$f_{x}$が$U_{\delta}(x_0,y_0)$上で存在するので、微分可能な関数である。
一変数の微分可能な関数の平均値の定理から、ある正数$\theta \in (0,1)$ が存在して、
$\phi(h_1)-\phi(0)=h_1{\phi}'(\theta h_1)$
式(b)を用いて、この式を関数fを用いて表すと
$f\bigl((x+h_1,y+h_2)^{T}\bigr)-f\bigl((x,y+h_2)^{T}\bigr)=h_{1}D_{x_1}f\bigl((x+\theta h_1,y+h_2)^{T}\bigr) \qquad (c)$
式(a)の右辺の第2項$f\bigl((x,y+h_2)^{T}\bigr)-f\bigl((x,y)^{T}\bigr)$ を考える
関数fの偏微分$D_{y}f$が$(x_0,y_0)$で存在することから、
$f\bigl((x,y+h_2)^{T}\bigr)-f\bigl((x,y)^{T}\bigr)=h_2D_{y}f(x_0,y_0)+0(h_2)\qqad (d)$
ここで$0(h_2)$は、$\lim_{h_2\to 0,h_2\neq 0}\frac{0(h_2)}{h_2}=0$
式(a)の右辺に、式 (c),(d)を代入すると、
$f((x+h_1,y+h_2)^{T})-f((x,y)^{T}) $
$=h_{1}D_{x}f\bigl((x+\theta h_1,y+h_2)^{T}+h_2D_{y}f(x_0,y_0)+0(h_2)$
$D_{x}f$は$( (注)この定理はn変数関数の場合にも、次のように拡張できる。
系;$C^{1}$級の関数は微分可能
定理3 (合成関数の微分)
2つの2変数の実関数$x_{1}=x_{1}(\xi_{1},\xi_{2}),\ x_{2}=x_{2}(\xi_{1},\xi_{2})$を、
共に、点$(\xi_{1}^{0},\xi_{2}^{0})$ において微分可能、
2変数の実関数 $f(x_1,x_2)$ が、
点 $(x_{1}^{0},x_{2}^0)=\Bigl( x_{1}(\xi_{1}^{0},\xi_{2}^{0}),x_{2}(\xi_{1}^{0},\xi_{2}^{0})\Bigr) $ において微分可能とする。
すると、合成関数
$\qquad \qquad g(\xi_{1},\xi_{2})\triangleq f\Bigl( x_{1}(\xi_{1},\xi_{2}),x_{2}(\xi_{1},\xi_{2})\Bigr) $
は、$(\xi_{1}^{0},\xi_{2}^{0})$ で微分可能であり、
$g_{\xi_{1}}(\xi_{1}^{0},\xi_{2}^{0})$
$=\frac{\partial f}{\partial x_1}(x_{1}^{0},x_{2}^0)\frac{\partial x_{1}}{\partial \xi_{1}}(\xi_{1}^{0},\xi_{2}^{0}) + \frac{\partial f}{\partial x_2}(x_{1}^{0},x_{2}^0)\frac{\partial x_{2}}{\partial \xi_{1}}(\xi_{1}^{0},\xi_{2}^{0}) $
$g_{\xi_{2}}(\xi_{1}^{0},\xi_{2}^{0})$
$=\frac{\partial f}{\partial x_1}(x_{1}^{0},x_{2}^0)\frac{\partial x_{1}}{\partial \xi_{2}}(\xi_{1}^{0},\xi_{2}^{0}) + \frac{\partial f}{\partial x_2}(x_{1}^{0},x_{2}^0)\frac{\partial x_{2}}{\partial \xi_{2}}(\xi_{1}^{0},\xi_{2}^{0}) $

$\vec{\xi}^{0}=(\xi_{1}^{0},\xi_{2}^{0}),\ \vec{x}^{0}=(x_{1}^{0},x_{2}^{0})$ とおけば、上式は
$g_{\xi_{j}}(\vec{\xi}^{0}) = \sum_{i=1}^{2}f_{x_i}(\vec{x}^{0})(x_i)_{\xi_{j}}(\vec{\xi}^{0}) \quad (j=1,2)$
あるいは、
$g_{\xi_{j}}(\vec{\xi}^{0}) = \sum_{i=1}^{2}\frac{\partial f}{\partial x_i}(\vec{x}^{0})\frac{\partial x_i}{\partial \xi_{j}}(\vec{\xi}^{0}) \quad (j=1,2)$
と書ける。
これは、さらに容易にわかる、どの点の関数値かを省略すれば
$g_{\xi_{j}} = \sum_{i=1}^{2}f_{x_i}\cdot (x_i)_{\xi_{j}} \quad (j=1,2)$
あるいは
$g_{\xi_{j}} = \sum_{i=1}^{2}\frac{\partial f}{\partial x_i}\frac{\partial x_i}{\partial \xi_{j}} \quad (j=1,2)$
と略記できる。
証明
=== 二階偏微分可能な関数 === 議論を簡単にするため、この§でも2変数関数$f(\textbf{x})$ で考える。
ここで$\textbf{x}=(x_1,x_2)^{T}$
==== $C^{2}$級の関数 ====

個人用ツール