輸送問題

提供: Internet Web School

UNIQ4d22c50e771a9c32-MathJax-2-QINU2 による版

製品を2つの工場A1,A2で製造し3社B1,B2,B3に納入している企業がある.これら3社からの注文は表2-1の通りである.この注文に応じるため表2-2のように工場A1,A2で製品を製造する. 製造した製品を工場A1,A2からそれぞれB1,B2,B3に輸送する際の1単位当たりのコストは表2-3の通りである. 3社B1,B2,B3からの注文を充足し,かつ,輸送コストを最小にするには, 工場A1,A2から3社B1,B2,B3への輸送数をどのように配分すれば良いか.

表2-1(注文数)

B1 65
B2 45
B3 50

表2-2(注文数)

A1 70
A2 90


表2-3(輸送コスト)

B1 B2 B3
A1 5 7 11
A2 10 6 3

工場\(A_i\)から注文先\(B_j\)への製品の輸送量を

\(x_{i,j}\left(\ i=1,2\ j=1,2,3\right)\) で表すと,

表2-1から工場\(A_1,A_2\)から注文先\(B_1,B_2,B_3\)への輸送について制約条件式

\( x_{1,1}+x_{2,1}=65 \\  x_{1,2}+x_{2,2}=45 \\  x_{1,3}+x_{2,3}=50  \)

を満たす. また,表2-2から工場\(A_1,A_2\)の製造量について制約条件式

\( x_{1,1}+x_{1,2}+x_{1,3}=70 \\  x_{2,1}+x_{2,2}+x_{2,3}=90 \) 

を満たす.さらに製造量は非負であるから

\( {0\leqq x}_{i,j} i=1,2;j=1,2,3 \)

これらの制約条件の下で輸送コストの総和

\( {5x}_{1,1}+{7x}_{1,2}+11x_{1,3}+{10x}_{2,1}+{6x}_{2,2}+{3x}_{2,3} \)

の最小値を求める.この問題も生産計画と同様 線形計画法 に属する.


ファイル:輸送問題.pdfにMicrosoft Excel のソルバーを用いたこの問題の解法例を示す. 

作成したデータは以下の通りである.

ソルバーのパラメータ 入力は以下の通りである.

ソルバーによる結果は以下の通りである. $x_{1,1}=65,x_{1,2}=5,x_{1,3}=0,x_{2,1}=0,x_{2,2}=40,x_{2,3}=50$

のとき輸送コストの総和 $x_{1,1}+7x_{1,2}+11x_{1,3}+10x_{2,1}+6x_{2,2}+3x_{2,3}$ が最小値750になることを示している. 表2-1,表2-2の制約条件を満たしている.


フリーソフトOpenOfficeの表計算(Calc) でも同様に解くことができる.

Calcの線形計画法解析ソフトもExcelと同じ名前の「ソルバー」である. メニューの「ツール」の「ソルバー」である. Excelのソルバーと操作法は殆ど同じある.

ベクトルの内積もExcelと同様にsumproductである. 行ベクトルと行ベクトルとの区切りが,ではなく;であることが異なる。 ベクトル(B4,C4,D4) と(B2,C2,D2)の内積 B4*B2+C4*C2+D4*D2  はsumproduct(B4:D4;B2:D2)で表される. また,

制約条件式 

$ 0 \leq x_1,0 \leq x_2,0 \leq x_3  $ を入力するためには,ソルバーのメニューのオプションを使う. 変数を負でない という 選択にチェックを入れる.


以下にデータの入力とソルバーの設定例を示す.

個人用ツール