輸送問題

提供: Internet Web School

UNIQ1aacb5c83dc30d5e-MathJax-2-QINU2 による版
(差分) ←前の版 | 最新版 (差分) | 次の版→ (差分)

製品を2つの工場A1,A2で製造し3社B1,B2,B3に納入している企業がある.これら3社からの注文は表2-1の通りである.この注文に応じるため表2-2のように工場A1,A2で製品を製造する. 製造した製品を工場A1,A2からそれぞれB1,B2,B3に輸送する際の1単位当たりのコストは表2-3の通りである. 3社B1,B2,B3からの注文を充足し,かつ,輸送コストを最小にするには, 工場A1,A2から3社B1,B2,B3への輸送数をどのように配分すれば良いか.

表2-1(注文数)

B1 65
B2 45
B3 50

表2-2(注文数)

A1 70
A2 90


表2-3(輸送コスト)

B1 B2 B3
A1 5 7 11
A2 10 6 3

工場UNIQ7b8fd3f243f16abc-MathJax-19-QINUから注文先UNIQ7b8fd3f243f16abc-MathJax-20-QINUへの製品の輸送量を

UNIQ7b8fd3f243f16abc-MathJax-21-QINU で表すと,

表2-1から工場UNIQ7b8fd3f243f16abc-MathJax-22-QINUから注文先UNIQ7b8fd3f243f16abc-MathJax-23-QINUへの輸送について制約条件式

UNIQ7b8fd3f243f16abc-MathJax-24-QINU

を満たす. また,表2-2から工場UNIQ7b8fd3f243f16abc-MathJax-25-QINUの製造量について制約条件式

UNIQ7b8fd3f243f16abc-MathJax-26-QINU 

を満たす.さらに製造量は非負であるから

UNIQ7b8fd3f243f16abc-MathJax-27-QINU

これらの制約条件の下で輸送コストの総和

UNIQ7b8fd3f243f16abc-MathJax-28-QINU

の最小値を求める.この問題も生産計画と同様 線形計画法 に属する.


ファイル:輸送問題.pdfにMicrosoft Excel のソルバーを用いたこの問題の解法例を示す. 

作成したデータは以下の通りである.

ソルバーのパラメータ 入力は以下の通りである.

ソルバーによる結果は以下の通りである. UNIQ7b8fd3f243f16abc-MathJax-16-QINU

のとき輸送コストの総和 UNIQ7b8fd3f243f16abc-MathJax-17-QINU が最小値750になることを示している. 表2-1,表2-2の制約条件を満たしている.

フリーソフトOpenOfficeの表計算(Calc) でも同様に解くことができる.

Calcの線形計画法解析ソフトもExcelと同じ名前の「ソルバー」である. メニューの「ツール」の「ソルバー」である. Excelのソルバーと操作法は殆ど同じある.

ベクトルの内積もExcelと同様にsumproductである. 行ベクトルと行ベクトルとの区切りが,ではなく;であることが異なる。 ベクトル(B3,C3,D3) と(B8,C8,D8)の内積 B3*B8+C3*C8+D3*D8  はsumproduct(B3:D3;B8:D8)で表される. また,

制約条件式 

UNIQ7b8fd3f243f16abc-MathJax-18-QINU を入力するためには,ソルバーのメニューのオプションを使う. 変数を負でない という 選択にチェックを入れる.


以下にデータの入力とソルバーの設定例を示す.

個人用ツール