物理/力と運動の法則

提供: Internet Web School

UNIQ256d7c922780a04c-MathJax-2-QINU2 による版

物理3章 力と運動の法則

目次

力の性質

力は物体の運動を変化させたり、物体を変形させる働きがある。

の 「2.2.1 力の性質」と 「6.1.2 力による運動の変化」 を見てください。

いろいろな力

万有引力 ,重力電気力(電荷のクーロンの法則)磁気力(磁荷のクーロンの法則)弾性力(ばねなどの力))、摩擦力、人間・動物の筋肉の力、機械の生み出す力、浮力、張力
など、色々な力があります。
リンクをとってあるものについてはクリックすると詳しい説明がありますが、この段階では感じだけをつかめば良いです。
これらの力のいくつかはこれから詳しく学んでいきます。

力に関する法則

万有引力

2つの物体はお互いに同じ大きさの力で引き合う。
地球上のすべての物体が落下するのは, 物体が地球から、この引力で引かれているから(地球もその物体から引かれるが、桁違いに質量が大きいので殆ど動かず、観測できない)。
この力を万有引力という。その大きさや向きを与える万有引力の法則は「6節 万有引力の法則」で学ぶ。

電気力、磁気力

9章で学びます。簡単な説明は、 ウィキブックス(中学校理科 第1分野) の4章をご覧ください。

作用・反作用の法則(運動の第3法則)とそれに基づく力

第一の物体が第二の物体に力を及ぼすときは、第二の物体は第一の物体に大きさは同じで逆向きの力を及ぼす。ただし、作用・反作用はお互いを結ぶ直線上にのみ働く
という経験則である。


弾性力とフックの法則

および弾性力(ばねなどの力)

摩擦力

圧力

気体の中や液体の中におかれた物体の面は、気体や液体から力を受ける。  
単位面積の面に働く力を圧力といい、気体の場合は気圧、水の場合は水圧ともいう。  
気体や液体で圧力が生じるのは、それらを構成する膨大な個数の分子・原子が運動していて、物体の面に衝突し、力を与えるためである。気体の場合については 「7章 気体の分子運動論」で詳しく学ぶ。

次の法則が知られている。
 ①気圧や水圧は、同じ場所ならば、どのような向きの面に対しても一定である。  
 ②下部になるほど気体や水の重さにより、圧力は大きくなる。
これらの理由については、運動法則が必要なので、4章で学ぶ。

力の合成と分解

力はベクトルで表わされる

力の働きは、力の大きさと向きおよび力の作用する場所(作用点)によって決まる。そこで力は、その作用点を始点とする(束縛)ベクトルで表わされる。

力の合成と分解の法則

一つの質点に力 $F_1, F_2, \cdots , F_n$ が同時に働いた時と、$F = F_1 + \cdots + F_n$(ベクトルとしての和)という一つの力が働いたときとは、質点の運動は同一であることが実験により、確かめられています。実はこの自然の法則に合致するようにベクトルの和は定められたのです。但し力が作用する場所が異なれば働きもかわるので、作用点に注意が必要です。 逆に一つの力を2以上の力の和に分解すると物体の運動を簡単に見つけることができることがあります。これらについては

  • 力(wikipedia) の「4 力の合成と分解」を見てください。

質点の運動法則について学ぶ。2章で学んだように質点は大きさをもたない点であり、大きさをもった物体の運動の解析に比べてはるかに容易です。

運動の3法則

ニュートンは次に述べる運動の3法則と万有引力を基本法則として記述し、地上の物体の運動も惑星の運動もすべて導けることを明らかにした。 これらは地上のあらゆる物体(気体、液体、固体)の運動や太陽系など天体の運動の解析に決定的役割を果たし、万能のように思われてきた。しかし20世紀になって、この法則がなりたたない現象(高速度に近い物体の運動や原子や電子など微小な物質の運動)が認識され、相対論的力学や量子力学が生まれた。

運動の第一法則(慣性法則)

慣性系から観測すると、力を受けていない質点は等速の直線運動をするという経験則(実験や観測で確かめられた事実のこと)であり,慣性系は存在するという主張をしている法則です。

運動の第二法則(運動法則)

物体は力を受けた時、運動を変えますが、どのように変えるかを明らかにした経験則です。力の正確な定義式とも見なせます。この法則の理解には質量という概念が必要です。

質量

運動の第二法則と微分方程式

この準備のもとで運動の第2法則は

で与えられます。
この式は時間関数 $x(t)$ の時間 $t$ についての2階の微分が $f/m$ に等しいという微分を含んだ方程式なので、微分方程式と呼ばれます。$F$ が力の法則などから分かると、質点の初期時刻 $0$ の位置と速度をあたえればこの方程式をといて、任意の時刻 $t \ge 0$ の質点の位置が分かり、速度や加速度も分かります。微分方程式の解法は大学で学びます。今後は特に断らないときはFは一定として議論をします。$F$ が時間とともに変わる時は大学で学びます。

運動量

運動の第三法則(作用・反作用の法則)

これについてはすでに3章で説明しました。

 万有引力の法則

ニュートンは、地球上の落体運動や惑星の運動を生じさせる力の根源は、物体間に働く引力であると認識し、2つの質点の間に働く引力を定める式を、ケプラーの法則から求め、万有引力の法則と名付けた。

万有引力の式中の万有引力定数Gについては、

を参照のこと。


 地上の重力 

地上の物体は地球から $M \cdot g$ ($M$:質量、$g$:重力による加速度。両者を掛けると、運動の第2法則から力になる)の力で地球の重心(もう少し後で学ぶ。当分中心と思って良い)方向に引っ張られる。

地上にある物体に重さがあるのは、地球の質量と物体の質量の間に万有引力が働き、物体に地球中心への力が作用するためである。

ガリレイ変換とガリレイの相対性原理

どのような慣性系で観測しても力学の法則は同じであるという原理です。 一つの慣性系にたいして等速直線運動する観測系を考えると、力の働いてない物体はやはり、等速直線運動するので慣性系であり、運動の第2、第3法則は成立することを主張している。

この原理は長い間物理学の指導原理となっていたが、20世紀になって、アインシュタインによって修正された。

CAIテスト

個人用ツール