物理/電気と磁気(1) 静電気と電界、電流と磁界

提供: Internet Web School

(版間での差分)
(ガウスの法則の応用)
(電気力線の本数と密度)
64 行: 64 行:
電場を目で見て理解できるように工夫したのが電気力線。<br />電界内で正の電荷が電界から力を受けて非常にゆっくりと動く時の向きのついた軌跡(曲線)を考え、電気力線と呼ぶ。<br />正確には、曲線の各点の接線の向きが電界の向きに一致するとき、電気力線という。
電場を目で見て理解できるように工夫したのが電気力線。<br />電界内で正の電荷が電界から力を受けて非常にゆっくりと動く時の向きのついた軌跡(曲線)を考え、電気力線と呼ぶ。<br />正確には、曲線の各点の接線の向きが電界の向きに一致するとき、電気力線という。
=====電気力線の本数と密度=====
=====電気力線の本数と密度=====
-
ある点で電界の強さが<tex> \mathit{E} </tex> であるとき、<br />その点を中心に電界と直交する微小な平面部分をとり、<br /> <tex>1m^2 </tex> あたり<tex> \mathit{E} </tex>本の密度で電気力線が通るように描いて、電界の強さを表示する。
+
ある点で電界の強さが<tex> \mathit{E} </tex> であるとき、<br />その点の周りに電界と直交する微小な平面部分を考え、<br /> そこを<tex>1m^2 </tex> あたり<tex> \mathit{E} </tex>本の密度で電気力線が通るように描いて、電界の強さを表示する(電界の強さが、負のときは向きを逆に、また整数でなく、例えば0.1のような時は、一つの電気力線が0.1本を表すとして、図示すればよい。もっと厳密な方法は大学で学ぶ)。
 +
 
=====ガウスの法則=====
=====ガウスの法則=====
● O点に置かれた一つの点電荷<tex> +q </tex>がつくる電気力線;O点を始点とする外向きの半直線。<br />その密度;O点を中心、半径<tex>r</tex> [m]の球面上での電界の強さは、<tex>\mathit{E}=\frac{q}{4 \pi \varepsilon_0}\frac{1}{r^2} [N/C] </tex>なので、<tex>1m^2 </tex> あたり E 本の電気力線が球面を、中から外に向かって、貫く。<br />球面の中から外に向かう電気力線の本数;球面の面積は<tex> 4 \pi r^2  </tex> なので、球面全体を貫いて出ていく電気力線の総本数は<tex>\frac{q}{\varepsilon_0} </tex>。球面の半径を変えてもこの本数は変わらない。少し高等な数学を利用すると、O点を含む任意の形状の立体の表面を貫いて出ていく電気力線の総数も、<tex>\frac{q}{\varepsilon_0} </tex>であることが示せる。<br />O点を含まない任意の形状の立体の表面を考えると、O点からの半直線である電気力線がこの面から立体の中にはいると、必ず出ていくので、この立体に入る電気力線の本数は、出ていく本数と等しい。前者は負の本数と取り決めると、合計して、0本となる。故に、任意の形状の立体の表面を貫いて出ていく電気力線の総数=<tex>\frac{q}{\varepsilon_0} </tex>が成立する。ここで<tex> q </tex>はこの立体の内部にある点電荷。<br />
● O点に置かれた一つの点電荷<tex> +q </tex>がつくる電気力線;O点を始点とする外向きの半直線。<br />その密度;O点を中心、半径<tex>r</tex> [m]の球面上での電界の強さは、<tex>\mathit{E}=\frac{q}{4 \pi \varepsilon_0}\frac{1}{r^2} [N/C] </tex>なので、<tex>1m^2 </tex> あたり E 本の電気力線が球面を、中から外に向かって、貫く。<br />球面の中から外に向かう電気力線の本数;球面の面積は<tex> 4 \pi r^2  </tex> なので、球面全体を貫いて出ていく電気力線の総本数は<tex>\frac{q}{\varepsilon_0} </tex>。球面の半径を変えてもこの本数は変わらない。少し高等な数学を利用すると、O点を含む任意の形状の立体の表面を貫いて出ていく電気力線の総数も、<tex>\frac{q}{\varepsilon_0} </tex>であることが示せる。<br />O点を含まない任意の形状の立体の表面を考えると、O点からの半直線である電気力線がこの面から立体の中にはいると、必ず出ていくので、この立体に入る電気力線の本数は、出ていく本数と等しい。前者は負の本数と取り決めると、合計して、0本となる。故に、任意の形状の立体の表面を貫いて出ていく電気力線の総数=<tex>\frac{q}{\varepsilon_0} </tex>が成立する。ここで<tex> q </tex>はこの立体の内部にある点電荷。<br />

2011年5月11日 (水) 09:54時点における版

物理9章 電気と磁気(1) 静電気と電界、電流と磁界

テレビ、電話、携帯電話、冷蔵庫、パソコン、コピー機。
現代社会は電気や磁気を利用した製品に満ちている。
この章と次の章では、電気・磁気は何か、どのような性質を持つかについて学ぶ。

目次

 電磁気現象の根源 

物質をつくっている原子は、原子核と電子から出来ている。
詳しいことは11章で学ぶが、原子核はいくつかの陽子と中性子からできている。
電子の個数は陽子と同数である。
陽子は正の電荷+eをもち、電子はこれと同じ大きさで符号が反対の負の電荷-eを持つ。</br>同符号の電荷は互いに反発し、異符号の電荷は互いに引き合う。

陽子と電子の存在により、原子や分子、固体・液体など物体は生成され、
電荷、電流、磁石、電磁場、電磁波などの現象が生じる。
この章と次章でこれらについて学ぶ。

静電気

この節では、まず、静止した電荷(静電気という)の性質を学ぶ。

電荷

原子は正負等しい電荷をもつので、離れた所から観測すれば、正と負の電荷が打ち消しあっている(電荷をもたない)。
したがって、物質は通常は電荷を持たない。物質が電子をいくつか失ったり、獲得すると、物質は電荷を帯びる。帯電するという。
したがって全ての電荷はe の整数倍である。eを電気素量という。

点電荷

大きさの無視できる電荷を点電荷という。

電荷の単位

電荷保存の法則

電荷は消滅も生成もしないことが、経験によって確かめられている。これを電荷保存法則という。

摩擦電気

2つの物質をこすりあわせると、このエネルギーで、電子が一方の物質から他方の物質に移動して、
前者は正の電荷を帯び、(電荷保存法則より)後者はそれと同じ大きさの負の電荷を帯びる。
この帯電した電気を摩擦電気という。

クーロンの法則

同符号の2つの電荷は互いに反発し、異符号の電荷は互いに引き合う。
2つの静止した点電荷間の力の向きは、これらを結ぶ直線の方向と一致し、その大きさは、2つの電荷の積に比例し、その距離の2乗に反比例する。具体的には、

を参照のこと。向きも考慮したベクトル表示にも慣れたおくと良い。電荷q_1の位置ベクトルをr_1、電荷q_2の位置ベクトルをr_2、電荷q_1が電荷q_2から受けるクーロン力を\mathit{F_1}とすると \mathit{F_1}=\frac{q_1q_2}{4 \pi \varepsilon_0}\frac{1}{|r_1-r_2|^2}\frac{r_1-r_2}{|r_1-r_2|}にも慣れたおくと良い。

3つ以上の電荷に働く力

N 個(>2)の電荷q_1,,,,q_N があるとき、q_1 に作用する電気力は、q_2,,,,q_N  のそれぞれからq_1が受けるクーロン力(ベクトル表示)の和になることが実験で確かめられている。 これを、クーロン力の重ね合わせ原理という。

クーロン力は保存力

クーロン力が保存力である。このことを確かめてください。保存力については、5章 §4 保存力と位置エネルギーおよび力学的エネルギー保存則 を参照のこと。

自己力について

点電荷が自分自身に力(自己力という)を与えるだろうか。これは大変難しい問題であり、高校では、この力を無視しても良い現象を扱う。詳しくは大学で学ぶ。

電気力は重力よりはるかに大きいこと

質量1gの2つの質点にそれぞれ1クーロンの電気を帯電させ、1cm離しておいたときに、作用する静電気力と重力を計算して比較すること。

電界(あるいは電場)

電荷間に作用する力を近接作用の考え方で考察して電界(電場ともいう)という重要な概念を得る。
クーロンの法則を電界の概念でいいかえると、電界にかんするガウスの法則が得られる。電界から電位や電圧という重要な概念も得られる。

遠隔作用と近接作用

電荷の間のクーロン力はどのようにして働くのだろうか。遠隔作用と近接作用の二通りの考え方がある。遠隔作用では、電荷が互いに直接力を及ぼしていると考える。近接作用では、電荷が空間を歪ませ電界を作り、この歪んだ空間(電界)がもう一つの電荷に力を及ぼすと考える。現在は近接作用が自然の法則であると考えられている。

電界の定義

電荷に静電気力(クーロン力)を及ぼす空間を電界と呼ぶ。
空間の任意の点の電界の強さと向きは、その点に単位電荷を置いたときに作用する静電気力で定義する。詳しくは

電界によるクーロンの法則の表現

電荷 \mathit{q} が、電荷 \mathit{q'} から受ける力は、
 \mathit{q'}  \mathit{q} 点に作る電界 \mathit{E}  を用いて、  \mathit{F}=\mathit{q}\mathit{E}

点電荷のつくる電界

点電荷のつくる電界については

を参照のこと。静電荷の作る電界は、時間変動がなく、静電界と呼ばれる。 

2つ以上の点電荷の作る電界

クーロン力の重ね合わせの原理と電界の定義から、それぞれの電荷がつくる電界のベクトル和を取れば良いことが分かる。

電界の単位

 \mathit{F}=\mathit{q}\mathit{E} , 
電荷\mathit{q}の単位はC(クーロン)、力 \mathit{F} の単位はN(ニュートン)なので、
電界 \mathit{E} の単位は \mathit{N/C}  である。

電気力線とガウスの法則

電気力線とは  

電場を目で見て理解できるように工夫したのが電気力線。
電界内で正の電荷が電界から力を受けて非常にゆっくりと動く時の向きのついた軌跡(曲線)を考え、電気力線と呼ぶ。
正確には、曲線の各点の接線の向きが電界の向きに一致するとき、電気力線という。

電気力線の本数と密度

ある点で電界の強さが \mathit{E}  であるとき、
その点の周りに電界と直交する微小な平面部分を考え、
 そこを1m^2 あたり \mathit{E} 本の密度で電気力線が通るように描いて、電界の強さを表示する(電界の強さが、負のときは向きを逆に、また整数でなく、例えば0.1のような時は、一つの電気力線が0.1本を表すとして、図示すればよい。もっと厳密な方法は大学で学ぶ)。

ガウスの法則

● O点に置かれた一つの点電荷 +q がつくる電気力線;O点を始点とする外向きの半直線。
その密度;O点を中心、半径r [m]の球面上での電界の強さは、\mathit{E}=\frac{q}{4 \pi \varepsilon_0}\frac{1}{r^2} [N/C] なので、1m^2 あたり E 本の電気力線が球面を、中から外に向かって、貫く。
球面の中から外に向かう電気力線の本数;球面の面積は 4 \pi r^2  なので、球面全体を貫いて出ていく電気力線の総本数は\frac{q}{\varepsilon_0} 。球面の半径を変えてもこの本数は変わらない。少し高等な数学を利用すると、O点を含む任意の形状の立体の表面を貫いて出ていく電気力線の総数も、\frac{q}{\varepsilon_0} であることが示せる。
O点を含まない任意の形状の立体の表面を考えると、O点からの半直線である電気力線がこの面から立体の中にはいると、必ず出ていくので、この立体に入る電気力線の本数は、出ていく本数と等しい。前者は負の本数と取り決めると、合計して、0本となる。故に、任意の形状の立体の表面を貫いて出ていく電気力線の総数=\frac{q}{\varepsilon_0} が成立する。ここで q はこの立体の内部にある点電荷。
● 重ね合わせの原理をもちいると、上記の法則は次のように、一般化出来る。
任意の形状の立体の表面を貫いて出ていく電気力線の総数=\frac{q}{\varepsilon_0} 。 ここで、qはこの立体の内部にある全電荷量。これをガウスの法則という。

ガウスの法則の応用

例1:面密度\sigma で、一様に電荷が分布する無限に広い平面の作る電界。
例2:平行板コンダンサー;2枚の金属の薄い平板を距離dをへだてて平行に置いたもの。
その1枚に面密度 +\sigma 、他方の板に面密度-\sigma の電荷を帯電させた時、周りに生じる電界を求めよ。
答え:極板間ではE=\frac{\sigma}{\varepsilon_0}

電位と電圧

電界中で電荷は力を受ける。その力と逆向きで同じ大きさ(実際にはそれより無限小大きい)の力を与えて、単位電荷を基準とするO点からA点に動かすのに必要なエネルギーを、O点を基準点としたA点の電位という。以下を参照のこと。

2点間の電位の差を、電位差あるいは電圧という。

電位は移動経路によらず、同じ値になること

クーロン力は保存力である(このことを確かめてください)。そのため、今説明した電位は、O点からA点に動かす経路には関係なく定まる。保存力については、[[力学(4) 運動量と力学的エネルギー保存則  力学(4) 運動量と力学的エネルギー保存則 を参照のこと。

電位・電圧の単位

電荷の単位を[C],仕事の単位を[J]にした時の電位を、ボルトという。すなわち[V]=[J/C]。

点電荷のつくる電界の電位

電位の基準点として無限の彼方をとる。A点に置かれた+q[C]の電荷のつくる電界の電位は、A点から距離r[m]の点で、\mathit{V}=\frac{q}{4 \pi \varepsilon_0 r}

2つ以上の点電荷の作る電界の電位

電界の重ね合わせの原理から、それぞれの点電荷のつくる電位を加えればよい。

等電位面

電位の等しい点をつないで出来る面を等電位面という。等電位面と電気力線は直交していることが示せる。

電界中の導体と静電誘導

静電遮蔽

静電界の中に置かれた、導体の箱の中の空間には、電荷が存在しない限り、電界は存在しない。すなわち、導体の箱の内部は、外部の静電界から遮蔽されている。

電界中の不導体と誘電分極

コンデンサー

コンデンサーは電気を蓄える道具である。

コンデンサーに蓄えられる電気量と電圧

コンデンサーの誘電率

たくわえられるエネルギー

電流

電流の単位

電流と磁界

直線電流がつくる磁界

円電流がつくる磁界 

アンペールの法則 

磁界が電流に及ぼす力

ローレンツ力

磁界中の電流がうける力

平行電流が及ぼしあう力

磁界中を動く導線と誘導起電力

磁界中を動く導線と電界

磁束密度と物質の透磁率

磁束密度

物質の透磁率

磁界と磁束密度

 静磁気

 モーター

直流モーター

交流モーター

CAIテスト

個人用ツール