物理/音と音波

提供: Internet Web School

UNIQ691a432f7967307b-MathJax-2-QINU2 による版

目次

音と音波

音波とは、狭い意味では、空気の粗密の振動が伝わっていく縦波である。
広義には、気体、液体、固体の中を伝わる縦波(粗密波)を音波という。
音波は波なので、反射、屈折、回折、干渉など、波に共通する特有の性質をもつ。
そのため、「4.1 波の性質」で述べたことは、すべて成立する。

音波の伝わり方

音波の速さ

乾燥した空気をつたわる音波の速さ $V$ は
空気温度 t℃ が高くなると早くなり、
$V=331.3+0.6 t \qquad \qquad (1)$
で表せる(注参照)。
液体や固体中の音波の速さは、空気中よりずっと大きい。
音速の測定や理論研究の歴史、種々の媒質中の音速については、

を参照のこと。

(注) 空気は静止していると仮定している。
一定速度で動く空気中では、
その空気に対する音の相対速度が、式(1)で表される。

音の3要素

音の3要素 とは次の3つである。

(1)音の高さ;
振動数の高い音ほど、高音に聞こえる。
1オクターブ高い音とは、振動数が2倍になることをいう。
ちなみに、人間の耳に聞こえる音は、振動数が20Hzから2万Hzの音である。
可聴音という。
(2)音の強さ;
音には強く聞こえる音と弱く聞こえる音がある。
音の強弱は、媒質の密度、波の振幅と振動数によって決まる。
媒質密度と振動数が同じならば、振幅の大きな音ほど強く聞こえる。
(3)音色;
発音体が違うと振動数と強さが同じ音でも、音の感じが違う。
これを音色あるいは、ねいろという。
波の多くは、波形が正弦関数で表せないので、
振動数や振幅が同じでも、波形が異なるため音色が異なる。

音の性質

以下の(1)から(7)までの音の性質については、

  • [[wikibooks_ja:高等学校理科 物理I 波/音波と振動|高等学校理科 物理I 波/音波と振]動]で学んでください。

以下には、簡単に要点を補足をします。
この節では、座標系を考えるときは、空気が静止してみえる慣性座標系を用いる。

(1)音のうなり
振動数(または周波数)がわずかに異なる2つの音波(波)が干渉して、
振動数が中間とみなせる、
振幅がゆっくり周期的に変わる合成波を生ずる現象を言う。


(2)発音体の振動(その1)。弦の固有振動
張った弦をこすったり、はじいて振動させると、波が起き、両側に進行し、固定端で反射する。
反射波と進行波は重なり合って合成波である定常波ができる(注参照)。
弦の両端は固定され振動しないので、定常波の節になる。

この定常波の振動を、弦の固有振動、その振動数を固有振動数という。
(2-1)定常波の波長
両端の変位が零であることから、定常波動の波長 $\lambda$ と弦の長さ $l$ の間には次の関係が成立つことが分かる。
$l=\frac{\lambda}{2}n,\quad (n=1.2,3,,,)$ 変形すると
$\lambda=\frac{2l}{n},\quad (n=1.2,3,,,)$
ここで、nは定常波の腹の数。
上の式から、$\lambda$ は n の関数であることがわかるので、$\lambda_n$ とかく。
すると
$\lambda_n=\frac{2l}{n},\quad (n=1.2,3,,,) \qquad \qquad (1)$
腹の数が1の固有振動を基本振動(1倍振動)、$n \geq 2$の固有振動を、n倍振動と呼ぶ。

ファイル:GENPHY00010402-01.jpg
図 弦の固有振動

進行波の速さをVとし、n倍振動数を $f_n$ 、その波長を$\lambda_n$ とかくと、 $V=f_n \lambda_n$ 
$f_n =\frac{V}{2l}n \quad (n=1.2,3,,,) \qquad \qquad (2)$
が成立つ。

(注)「1.4.6.3 定常波と進行波」を参照のこと。

(2-2)弦を伝わる波の速さ
未完
(3)発音体の振動(その2)。気柱の振動
管の中の柱状の空気のことを気柱という。
管中の波は、その両端で反射し、元の波と反射波は重ねあって合成波をつくる。
この合成波は定常波になる。
その波長や周波数(振動数)は、ある固有の値しか取れない。
これらについて学ぶ。
波の変位量としてなにを用いているかで、同じ端でも自由端にも固定端にもなるので注意してくださ

い。
ウィキブックス(高等学校理科 物理I 波/音波と振動 1.3 気柱の振動)
$\quad $(3.1) 気柱の固有振動
$\quad $(3.2) 閉管の場合
$\qquad $ 閉管とは、一方が閉じ他端が開放されている音響管のこと。
$\qquad $ この管の定常波は、片方の端が腹で他端が節になる。
$\quad$(3.3) 開管の場合
$\qquad$ 開管とは、両端とも開放された音響管のこと。
$\qquad$ 波を空気の位置の振動とみると、両端は自由端であり、
$\qquad$ この管の定常波は、両方とも腹になる。
$\qquad$ 波を粗密の振動とみると、両端は固定端であり、
$\qquad$ この管の定常波は、両方とも節になる。
$\quad$(3.4) 開口端補正

なお、両端とも閉じた音響管を両端閉管という。管内の空気の固有振動は 両端を節とする定常波の振動である。


(4)固有振動と共鳴・共振
気柱の空気の振動など、振動する系は、それぞれ固有の振動数を持つ。
これを系の固有振動という。
振動系の固有振動数と等しい振動数の力をこの系に与えると
この系は激しく振動し始める。この現象を共鳴または共振と呼ぶ。
これについては下記もご覧ください。


(5)ドップラー効果
皆さんも、日ごろ
救急車のサイレンは、近づいているときは高い音に聞こえ、通り過ぎた瞬間に
低い音にかわることに気付いているでしょう。
一般に、音源の音を、音源に対し動いている人が聞くと、 元の音より高い周波数(=振動数)や低い周波数に聞こえる。 これを「ドップラー効果」という。

命題1
音速を $V_s$ とする。
音源が周波数fの音を出し、静止している観測者に速度 V$\gt 0$ で近づくとき、
観測者が聞く音の周波数 $\tilde{f}$ は、
$\tilde{f}=\frac{V_s}{V_s-V}f \qquad \qquad (3)$ 
である。 ここで、$V \lt V_s$ である。
音源が通り過ぎて遠ざかるようになった瞬間に、観測周波数は急減し、
$\tilde{f}=\frac{V_s}{V_s+V}f \qquad \qquad (3')$ 

証明 
音源から時刻 t=0 から一秒間だけ音を出すとする。
時刻0での、音源と観測者との距離を $L$ とすると、
この音が観測される時刻は $t_1=\frac{L}{V_s}$
最後(t=1)の音は、音源と観測者の距離が $L-V$ のとき発せられるので、
観測される時刻は $t_2=1+\frac{L-V}{V_s}$ 
この間にf回の振動が観測されるので、一秒間あたりの振動数(周波数)は
$\frac{f}{t_2-t_1}=\frac{V_s}{V_s-V}f$

命題2
静止音源が周波数fの音を出している。
観測者が速さ V($\gt 0$) で音源に近づいているときに聞くこの音の周波数 $\tilde{f}$ は、
$\tilde{f}=\frac{V_s+V}{V_s}f \qquad \qquad (4)$
ここで、 $V_s$ は、音速である。
観測者が音源を通り過ぎた瞬間に、観測音の周波数は急減し、 $\tilde{f}=\frac{V_s-V}{V_s}f \qquad \qquad (4')$
に変わる。

証明
音源から一秒間(時刻0から、時刻1まで)だけ周波数fの音を出すとする。
このときの観測者と音源の距離を L とおく。
すると、速さVで音源に近づく観測者が、
$\quad $ 最初の音を聞く時間 $t_1$ は、
$\qquad $ $L-Vt_1=V_s t_1$
$\quad $ 最後の音を聞く時間 $t_2$ は、
$\qquad $ $L-Vt_2=V_s (t_2-1)$
これら2式から、
$t_2-t_1=\frac{V_s}{V_s+V}$ この間に、音はf回 振動しているので、一秒当たりの振動の回数(周波数、振動数)は、
$\tilde{f}=\frac{V_s+V}{V_s}f$
同様に考えると、 観測者が音源を通り過ぎた瞬間からは、音源から 速さ V で遠ざかるため、 $\tilde{f}=\frac{V_s-V}{V_s}f$
が、得られる。

次に、一つの直線上を、音源と観測者がともに等速度で運動している場合の
ドップラー効果について考察する。
色々なケースを統一的に扱うため、空気が静止して見える一次元の慣性座標系を 用いる。

命題3
x軸上を、音源は速度 $v$ で等速運動しながら周波数(振動数)fの音を出す。 観測者はx軸上を速度 $u $ で等速運動している。
(1)観測者が音源の負側にいる場合
観測者は、
$\tilde{f}=\frac{V_s+u}{V_s+v}f \qquad \qquad (5)$
の周波数の音を聞く。 ここで、 $V_s$ は音速である。
(2)観測者が音源の正側にいる場合
観測者は、
$\tilde{f}=\frac{V_s-u}{V_s-v}f\qquad \qquad (5')$
の周波数の音を聞く。 ここで、 $V_s$ は音速である。

証明
(1)の場合(図参照)
ファイル:GENPHY00010402-02.pdf 音源が時刻 $t \in [0,1]$ の間だけ、周波数fの音を出すと仮定する。
時刻 t=0 における観測者と音源の距離を L とおく。
すると、観測者が最初の音を聞く時刻 $t_1$ は
$L-ut_1=V_st_1$
を満たす。
時刻t=1のときの、観測者と音源の距離は $L-u+v$ なので
観測者が最後の音を聞く時刻 $t_2$ は、
$L-u+v-u(t_2-1)=V_s(t_2-1)$
を満たす。
これら2式から
$t_2-t_1=\frac{V_s+v}{V_s+u}$
この間に、観測者の聞く音は、f回振動しているので、
一秒間あたりの振動の回数(周波数あるいは振動数)は
$\tilde{f}=f \div (t_2-t_1)=\frac{V_s+u}{V_s+v}f$

(2) 観測者が音源の正側にいる場合
同様にして証明できるので省略。
証明終わり

(注)この命題から、観測者が音源とすれ違うか追い越すと、その瞬間に観測周波数は急変することが分かる。

最後に、超音波による血流速度の測定に応用される命題を説明する。
命題4
周波数fの音を出している固定音源に、観測者がいて、
速さ v で近づく板からの反射音を観測すると、
$\tilde{f}=\frac{V_s+v}{V_s-v}f=(1+\frac{2v}{V_s-v})f$


(7)音の干渉
音も波なので、波の重ね合わせの原理が成立つ。
そのため一般の波でおこる干渉も起こる。

個人用ツール