物理/静電気と静電場(その1)
提供: Internet Web School
目次[非表示] |
「 5.1 静電気と静電場(1)」
電磁気現象の根源
詳しいことは次章で学ぶが、
物質をつくっている原子は、原子核とその周りを回る電子から出来ている。
原子核はいくつかの陽子と中性子からできている。
陽子は正の電荷+eをもち、
電子は、符号が反対の負の電荷-eを持つ(注1)。
中性子は電荷をもたない。
この電荷が電気の実体である。電荷の量を電荷量あるいは略して電荷という。
電荷の間には電気力が働く。同符号の電荷は互いに反発し、異符号の電荷は互いに引き合う。
電子の個数は陽子と同数であり、原子を巨視的な意味で離れて眺めると、
正負の電荷が打ち消しあって電荷をもたない粒子に見える。
原子核と電子は引き合い、原子を作っている。
また近くの原子同士も電気力で引き合い分子をつくり(注2)、気体や液体、固体をつくる。
帯電、静電気、磁石、電流、電磁波など、すべての電磁気現象は、電子と陽子の存在と運動によって生じる。
この章でこれらの電磁気現象とその法則について学ぶ。
(注1)電荷の正負について:
陽子どうし、電子どうしは反発するが、陽子と電子は引き合う。従って陽子と電子はことなった電荷である。
さらに陽子と電子の個数が同じだと離れた所からみると、電荷がない粒子として振る舞う。
このため一方の電荷に+、他方にーをつけて和を取ると電荷が0になるようにする。
どちらにーをあててもよかったが歴史的に電子にーをあてた。
なお、原子核のなかで電気的に反発する複数の陽子がくっついているのは、
反発力より強い核力で引き合っているため(次章で簡単に説明する)。
(注2);原子同士が引き合うメカニズムについては次章で簡単に紹介する。
静電気
この節では、まず、静止した電荷(静電気という)の性質を学ぶ。
帯電と電気素量
原子は通常、同数の電荷量eの陽子と-eの電子から構成されるので、
離れた所から観測すれば、正と負の電荷の影響が打ち消しあって,電荷をもたない粒子として振る舞う。
このため原子からできている物質は、通常は電荷を持たない。
物質が他の物質との摩擦などにより電子をいくつか失ったり、獲得すると、物質は電荷を帯びる。
帯電するという。
このため全ての物質の電荷量は e の整数倍になる。e を電気素量という。
点電荷
巨視的な観測では一点とみなせる微小な電荷を点電荷という。
力学で質点が果たした役割を、電磁気学では点電荷が果たす。
電子の電荷、質量
電荷;−e=−1.602×10−19C]
ここで、 [C] は電荷の単位クーロンである。
これについては、「5.4 電流と磁場 の1.3.2 電流と電荷の単位」を参照のこと。
質量;me=9.11×10−31[kg]
なお、電子は大きさのない電荷と考えられている。
詳しくは、
陽子の電荷、質量、大きさ
電荷;e=1.602×10−19[C]
質量;mp=1.67×10−27[kg]
荷電半径;rp=0.88×10−15[m]
詳しくは、
電荷保存の法則
電荷は消滅も生成もしないことが、経験によって確かめられている。これを電荷保存法則という。
クーロンの法則
クーロンは実験の結果次の法則を発見した。
・同符号の2つの電荷間には斥力(反発力)、異符号の電荷間には引力が働く。
・その向きは、2つの電荷を結ぶ直線の方向と一致し、
・その大きさ f は、2つの電荷の積 q1q2 に比例し、その距離 r の2乗に反比例する。
f=kq1q2r2(1)
なお、比例定数は, k=8.988×109[Nm2C2] である(注参照)。
これをクーロンの法則という。
- ウィキペディア(クーロンの法則)を参照のこと。
(注)この比例定数は、物理量をSI国際単位系で表示している(距離[m],電荷[C])ときの値である。
法則の適用可能な距離(RT)
どの位の距離までこの法則は成り立つのであろうか。
小さい方では、原子核の大きさは約 10−15m であるが、
その中の陽子間にはクーロンの法則が成り立つと考えられている(注参照)。
大きい方は、どこまで正確に法則がなりたつかは、はっきりしていない。
しかし、宇宙観測などからの分析から、現在の所、この法則は、この宇宙で普遍的に成り立つと考えられている。
(注)
何故、正の電荷を持つ陽子同士が、互いに反発して飛散せず、固く結合して原子核を作っているのだろうか?
それは、次章で簡単に触れるように、陽子同士が、これよりはるかに大きい核力で引き合うからである。
クーロンの法則のベクトル表示
向きと大きさを同時に記述できるのでベクトル表示は便利である。
電荷q1の位置ベクトルを→r1、電荷q2のそれを→r2、
電荷q1が電荷q2から受けるクーロン力を→F1とすると
→F1=kq1q2||→r1−→r2||2→r1−→r2||→r1−→r2||
この表現法に慣れておくとよい。ここで、k=14πε0 と表現することがある。
ε0は真空の誘電率と呼ばれる。
k≒9.0×109[Nm2C2]なので 、
ε0≒8.9×10−12[C2Nm2] である。
(注)真空中の誘電率という用語について;
真空は空虚な空間なので奇異に思うかもしれないが、歴史的にこう命名された。
誘電については後述「2.5 電界中の不導体と誘電分極」で学ぶ。
クーロン則は誘電されるものが無い状態で常になりたつ。
3つ以上の電荷に働く力
N(>2)個の電荷q1,,,,qN があるとき、q1 に作用する電気力は、
q2,,,,qN のそれぞれからq1が受けるクーロン力(ベクトル表示)の和になることが
実験で確かめられている。
これを、クーロン力の重ね合わせ原理という。
電気力は重力よりはるかに大きいこと
電子や陽子など、非常に小さい(あるいは大きさのない)素粒子と呼ばれる粒子は、
その位置が確率的にしか分からないが、
ニュートン力学の質点ように、その位置が分かるとして、
陽子と電子の間に働く電気力と万有引力の大きさを比べてみよう。
以下では、両者の距離を r[m] とする。
(1)電気力
クーロンの法則の比例定数は k=9×109[Nm2C2]、電気素量は、e=1.6×10−19[C] なので、
クーロンの法則から、fe=ke2/r2[N]≒ 9×109×(1.6×10−19)2/r2[N]≒23×10−29/r 2[N]
(2)万有引力
電子の質量は me≒9×10−31、
陽子の質量は mp≒1.67×10−27 なので
万有引力の法則から、
fg=Gmemp/r2[N]≒ 6.7×10−11×9×10−31×1.67×10−27/r2[N]≒101×10−69/r2[N]
これらから、
fefg≒2.3×1039
電気力が重力より桁違いに大きいことが分かる。
運動する2つの電荷の間に働く力
運動する2つの電荷の間にも力が働くが、クーロンの法則は正確には成り立たなくなる。
その力は、電荷の運動に複雑に関係するため、導出は大変難しい。
運動する電荷の作る電場を求め、電場中で動く電荷が受ける力を求める法則を用いて
導出するほうが、見通しよく、簡単である。(後述予定。RT)
電場(あるいは電界)
電荷間に作用する力を近接作用の考え方で考察して電場という重要な概念を得る。
クーロンの法則を電場の概念でいいかえると、電場にかんするガウスの法則が得られる。
電場から電位や電圧という重要な概念も得られる。
なお、電場は、工学の分野では、電界と呼ばれることが多い。
遠隔作用と近接作用(RT)
電荷の間のクーロン力はどのようにして働くのだろうか。
遠隔作用と近接作用という二つの考え方がある。
遠隔作用では、離れた電荷が瞬時に直接互いに力を及ぼしあうと考える。
近接作用では、電荷はその周りの空間を電気的にひずませ、
それが空間全体に及んで行き、
この歪の中におかれた他の電荷は、その場所の歪から力を受けると考える。
この空間の電気的歪を電場と呼ぶ。
静電気を考えるだけならば、両者は、単なる読み替えに過ぎず、同じ結論になる。
しかし、電気量が変化したり、電荷が動く場合には、遠隔力では説明できない現象が起こる。
そこで現在、電磁現象は、近接作用の基づいて起こると考えられ、
電磁気学は、この考え方で研究され、記述されている。
(注)真空は何もない空虚な空間と考えるのではなく、電磁気的な性質を持つ空間であると考える。
これは、真空という空間の物理的性質の解明の一端となりえる認識の変革である。
電場の定義
電荷に静電気力(クーロン力)を及ぼす空間を電場[electric(al) field]と呼ぶ。
クーロンの法則から、静止電荷は電場という、他の電荷に力をあたえる力の場を作ることが分かる。
空間の任意の点Pの電場の強さと向きは、
その点に単位量の点電荷を置いたときに作用する静電気力で定義する。
正確には、単位電荷をおくと、この電荷が、空間の電場をつくっている電荷達に、力を及ぼし動かして、
単位電荷の場所Pの電場を変えてしまう恐れがあるので、
無限小の電荷qを置いた時作用する電気力を →f とするとき、
→f/q でP点での電場を決め, →E(P) で表す(注参照)。
作用する電気力はベクトルで、それを電荷量というスカラーで割って定義する電場はベクトルである。
詳しくは
(注)電子を電場計測には使用できない。
その理由は、次章で説明するように、
量子力学的な効果のため、その位置を固定できないためである。
電場の定義には、位置の確定できる電荷が
必要であり、
巨視的には点とみなせるが、
原子レベルでみると、大きな電荷(点電荷という)を用いるしかない。
従って電場とは、巨視的には点とみなせる領域の平均的な値を与えるだけである。
電磁気学では、
任意の時刻tの空間の各点→xに、
この点の周りの巨視的には点とみなせる領域の
平均的な場の値E(→x,t)を対応させ、電気現象を研究する。
静止した点電荷の作る電場
空間の位置→rの電荷qが位置→r′ に作る電場は、
クーロンの法則と電場の定義から、
→Eq(r′)=kq||→r′−→r||2→r′−→r||→r′−r||
(注)導出;
位置→r′ の電荷q′が、電荷qから受ける力→Fは、クーロンの法則から
→F=kqq′||→r′−→r||2→r′−→r||→r′−→r||(a)
電場の定義から、位置→r′ の電場→Eq(r′)は
→Eq(r′)=→F/q′
この式に、式(a)を代入する。
電場によるクーロンの法則の表現
場所→rの電荷qと、場所→r′の電荷q′の間に働く電気力は、
→F=qkq′||→r−→r′||2→r−→r′||→r−r′||=q→Eq′(r) ; 電荷q に働く力
→F′=q′kq||→r′−→r||2→r′−→r||→r′−→r||=q′→Eq(r′) ;電荷q′ に働く力
点電荷のつくる電場
点電荷のつくる電場については
- ウィキペディア(電場) の2.1 クーロンの法則
を参照のこと。静電荷の作る電場は、時間変動がなく、静電場と呼ばれる。
2つ以上の点電荷の作る電場
クーロン力の重ね合わせの原理と電場の定義から、
それぞれの電荷がつくる電場のベクトル和を取れば良いことが分かる。
電場の重ね合わせの原理という。
電場の単位
→F=q→E、電荷qの単位はC(クーロン)、力→Fの単位はN(ニュートン)なので、
電場→Eの単位はN/C である。
電気力線とガウスの法則
電気力線とは
電場を目で見て理解できるように工夫したのが電気力線である。
電場内で正の電荷が電場から力を受けて非常にゆっくりと動く時
その方向に向きをつけた軌跡(曲線)を考え、電気力線(line of electric force)と呼ぶ。
正確には、曲線の各点における電場が、その曲線に接しているような曲線(電場の包絡線)を電気力線という。
電気力線の本数と密度
ある点Pで電場の強さがE=|→E| であるとき、
その点の周りに電場と直交する微小な平面部分を考え、
そこを1m2 あたりE本の密度で
電気力線が通るように描いて、電場の強さを表示する。
電場の強さが、負のときは向きを逆にする。
電場の強さが整数でなく、例えば0.1単位で変わる時に電気力線を図示するには、
一本の電気力線が0.1を表すなど工夫すればよい。
ガウスの法則
● O点に置かれた一つの点電荷qがつくる電気力線の場合;
電気力線はO点を始点とする外向きの半直線となる。
その密度;O点を中心とし半径r [m]の球面上での電場の大きさは、
E=q4πε01r2=kqr2 [N/C] なので、この球面を1m2 あたりE=kqr2 本の電気力線が、中から外に向かって貫く。
但し、q<0 のときは、k|q|r2 本の電気力線が外から中に向かうと決める。
球面を貫く電気力線の総本数;球面の面積は4πr2 なので、
球面全体を貫く電気力線の総本数は|q|ε0=4πk|q|。
故に、球面の半径を変えてもこの本数は変わらないことが分かる。
大学で学ぶ少し高等な数学(注参照)を利用すると、
O点を含む任意の形状の立体の表面を貫く電気力線の総数も、
qε0であることが示せる。
(注)ベクトル解析という。
興味のある方は本テキストの
「9章 物理数学(2)多変数の解析学・ベクトル解析」(RT;執筆予定)、
をご覧ください。
●O点を含まない任意の形状の立体の表面を貫く電気力線の総本数;
O点からの半直線である電気力線がこの面から立体の中にはいると、
必ず出ていくので、この立体に入る電気力線の本数は、出ていく本数と等しい。
前者は負の本数と取り決めると、立体を出ていく本数の合計は0本となる。
故にこの場合も、
立体の表面を貫いて出ていく電気力線の総数=qε0が成立する。
ここでq=0はこの立体の内部にある点電荷量。
ガウスの法則
点電荷の作る電場では
任意の形状の滑らかな境界を持つ立体の表面を貫く電気力線の総本数は、
その内部の電荷量をqとすると、
qε0(1)
を満たすことが分かった。
● 重ね合わせの原理をもちいると、上記の法則は次のように、一般化出来る。
電磁気学の基本法則の一つで,非常に重要な法則である。
ガウスの法則;
任意の形状の立体Vの表面Sを貫いて出ていく電気力線の総数=Qε0。
ここで、Qはこの立体の内部にある全電荷量。
この法則の導出を吟味すると、ガウスの法則はクーロン則から導かれていることがわかる。
ところがクーロン力はあらゆる静止電荷間に作用するので
ガウスの法則は、電気力線(電場)を生み出している、立体Vの内部にある電荷をすべて考慮してQとすれば、どのような物質の中でも、常に成立している。
「2.5 電場中の不導体と誘電分極」で学ぶように電荷Qを置いたとき、それが作る電場で、自動的に電荷が誘導され、これのつくる電場がもとの電場に加わって変化した電場が観測される。
そこで観測電場の電気力線のガウスの法則の右辺の電荷は、立体V内の元の電荷と誘電された電荷を含めたものにしないといけない。
● ガウスの法則は電磁気学の基本法則のひとつで、色々応用されるので、理解を深めるため別の表現を記しておく。
「任意の形状の立体Vの表面Sを貫いて出ていく電気力線の総数」を、電場→EとSの各点→rに立体Vの外部にむけて立てた長さ1の垂線→n(→r)(Sの点→rにおけるVの単位外法線と呼ぶ)を用いて表現しよう。
→n(→r)と→E(→r)が方向も向きも一致するときは、面Sは、点→rの近くの小部分dS(→r)で、→E(→r)と直交するので、ここを貫いて出ていく電気力線の本数はE(→r)×dS(→r)の面積=→E(→r)の外法線成分×dS(→r)の面積。
→n(→r)と→E(→r)が方向は一致するが向きは逆の時は、
点→rの近くの小部分dS(→r)で、→E(→r)と直交するが、電気力線は、この小部分から、立体Vに、流れ込む。
その本数はマイナスで数え、-E(→r)×dS(→r)の面積=→E(→r)の外法線成分×dS(→r)の面積。
→n(→r)と→E(→r) が角度 θのとき。
→E(→r)の、小部分dS(→r)に対する直交成分は、→E(→r)の外法線成分であるので、この部分を貫いて外部に出ていく電気力線の数は、この場合も、→E(→r)の外法線成分。
局面Sの微小部分dS(→r)を寄せ集めてS全体にすると、
「任意の形状の立体Vの表面Sを貫いて出ていく電気力線の総数」は、電場→Eの外法線成分のS全体での平均値×面Sの面積となる。
従ってガウスの法則は、次のように言いかえることができる。
S上の電場→Eの外法線成分のS全体での平均値×面Sの面積=Qε0。
あるいは、ε0→Eの外法線成分のS全体での平均値×面Sの面積=Q。
(注)これは真空中にある電荷について成立する。
不導体である流体、気体中では、
電荷Qにより生じる電場から流体や気体の原子中の原子核と電子が逆向きの力を受けて位置を変え、
片側に+、反対側に-電荷が集まる(分極するという)。
この分極電荷により新たに生じる電場が加わって、
電気力線の数がかわってしまうので、ガウスの法則は成り立たない。
しかし分極電荷も電荷にくわえれば、ガウス法則は常に成り立つ。
これについては、「2.5 電場中の不導体と誘電分極」で学ぶ。
ガウスの法則の応用
1:面密度(単位面積あたりの電荷量)σ(>0) で、
一様に電荷が分布する無限に広い平面が周りの真空に作る電場→E を求めよ。
ヒント
対称性から、平面から距離dの点の電場は、
方向・向きはこの平面に直交し電荷平面から放射される向きで、大きさはどの点でも等しい。
この大きさを求めるには、次のようにガウスの法則を利用する。
電荷平面から距離d以内の点からなる一つの直方体の表面を考え、ガウスの法則を適用する。
解:→Eの大きさはE=σ2ε0 、方向は極板に直交し、極板から 遠ざかる向きである。
2:平行板コンダンサー(2枚の金属の薄い平板を距離dをへだてて平行に置き電極をつけたもの。dに比べ平板面積は十分大きいとする)
1枚の極板(平板のこと)に面密度 +σ、他方の極板に面密度−σの電荷を帯電させた時、
周りに生じる電場を求めよ。
解:例1と重ね合わせの原理より、
極板間では大きさはE=σε0,
方向・向きは極板に直交し、正の極版から負の極版の向きである。
他の場所では電場は零である。
☆☆自己力の問題
点電荷の作る電場は、自己に力を及ぼさないのだろうか。
電位と電圧
クーロン力は保存力で、電場は保存力場
クーロン力は、
2章 力学 4節 エネルギーと保存則(その1) の
保存力の十分条件
によれば、
保存力であることが分かる。
電位
保存力は位置エネルギをもつ。
単位電荷あたりのクーロン力の基準点からみた位置エネルギーを、基準点からみた電位という。
具体的には、
ある点Oを定め、この点の電位を零と定める。O点を電位の基準点と呼ぶ(注1参照)。
電場中の任意の点Aの基準点Oからみた電位(electric potential)とは、
単位電荷をO点からA点に、
電場から受ける力を打ち消しながら(電荷の運動エネルギーが無視できるほどに)ゆっくり動かすのに必要な仕事の量で定義する(注2参照)。
電場は保存力場なので、
O点からA点に動かす経路に関係なく仕事は一定でなので、電位は一意に決まる。
単位電荷をA点からO点まで移動させるときに、電場からの力がする仕事を、
A点の(基準点Oからみた)電位と定義しても、同等である。
複雑に配置された電荷のつくる電場の場合にも、重ね合わせの原理から、電場からうける力は保存力となり、電位は経路に関係なく一意に定まる。
(注1)通常、基準点Oは無限遠の点が選ばれる。
(注2)電荷 q がO点からA点にゆっくり動いていくように外力を加えたときの、
外力のなす仕事を Wq と書くと、
A点の電位は、 Wqq で定義される。
電場をつくっている、周りの電荷の位置が、電荷 q によって変化し、
電荷 q に作用する電場の力が変化してしまうときには、
電荷量 q を無限に小さくしていった時の極限、
limで、A点の電位を決める。
2点間の電圧
任意の2点間の電位の差を、2点間の電位差(difference of electric potential)あるいは電圧(voltage)という。
なお電位については
また保存力については、
- 力学(4) 運動量と力学的エネルギー保存則の位置エネルギーの項と
- ウィキペディア(電位)
を参照のこと。
電位・電圧の単位
電荷の単位をクーロン、仕事の単位をジュールとしたときの電位や電圧の単位をボルト(記号V)という。
すなわち、 V=J/C 。
電場と直交する曲線上では等電位
曲線のどの場所でも電界と直交する曲線Cを考える。
この上では電位は等しいことが次のようにして示せる。
曲線上の任意の点Aから、曲線上の他の点Bまで、単位電荷を曲線にそってゆっくり移動させよう。
この時電荷に加える力は、電場と逆むきで大きさの等しい力である(注参照)。
しかしC上を動くときは、常に電界と直交する方向に動くので、電荷に加える力とも直交し、仕事は零となる。
したがって電位は等しい。
(注)これ以外に、曲線C上をゆっくり動かすためにCの接線方向に無限に小さな力を加える必要がある。
しかしこの力のなす仕事は無限に小さく無視できる。
点電荷のつくる電場の電位
電位の基準点として無限の彼方をとる。
A点に置かれた+q[C]の電荷のつくる電場の電位は、A点から距離r[m]の点Pで、
\phi(r)=\frac{q}{4 \pi \varepsilon_0 r}\qquad \qquad \qquad \qquad \qquad \qquad (9.1)
である。
これは単位の正電荷を無限遠点からP点まで、
クーロン力に抗した力を加えゆっくり動かす時の力のなすエネルギーを積分計算して求められる(注参照)。
(注)単位の正電荷をP点から無限遠点まで動かすとき、電場が電荷に行う仕事に等しい。
2つ以上の点電荷の作る電場の電位
電場の重ね合わせの原理から、それぞれの点電荷のつくる電位を加えればよいことが分かる。
電気双極子
電気双極子(electric dipole)とは、
微小な距離だけ離れた、大きさの等しい正負一対の電荷のこと。
後述するように電気双極子は自然界によく現れるので、
双極子のつくる電位\phiを調べることは大切である。
電荷をq,-qとし、-qの位置からqの位置へのベクトルを \vec d とする。
空間の原点を両電荷の中点に選ぶ。
位置ベクトル \vec r の点の電位は、重ね合わせの原理より、
\phi(\vec r)\,=\,\frac{q}{4 \pi \varepsilon_0 r_q}\,-\,\frac{q}{4 \pi \varepsilon_0 r_{-q}}\,=\,\frac{q}{4 \pi \varepsilon_0}(\frac{1}{r_q}-\frac{1}{r_{-q}})\hspace{150pt} (9-1)
ここで、 r_q は点電荷qと位置ベクトル\vec r の点との距離、
r_{-q} は点電荷-qと位置ベクトル\vec r の点との距離。
次の説明も参考に。
遠方に作る電位と双極モーメント
双極子の電荷間の距離 d に比べて、ずっと離れた点 \vec r の電位を簡略な式で近似しよう。
式(9.1)で r_q は、点電荷 q と位置ベクトル\vec r の点との距離なので、r_q=||\vec r -\frac{\vec d}{2}||=\sqrt{\sum_{i=1}^3 |r_i-d_i/2|^2}、同様に、r_{-q}=||\vec r +\frac{\vec d}{2}||=\sqrt{\sum_{i=1}^3 |r_i+d_i/2|^2}
||\vec d|| \ll ||\vec r|| の時、まず、\frac{1}{r_q} を簡略化する。
\frac{1}{r_q}=
1/||\vec r -\frac{\vec d}{2}||=
1/||\vec r|| \times ||\frac{\vec r}{||\vec r ||}-\frac{\vec d}{2||\vec r||}||=
1/||\vec r||\times ||\frac{\vec r}{||\vec r ||}-\frac{||\vec d||}{2||\vec r||}\frac{\vec d}{||\vec d||}||
f(x)=1/{||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||} という関数を導入すると
\frac{1}{r_q}=\frac{1}{||\vec r||}f(\frac{||\vec d||}{2||\vec r||})
ここで \frac{||\vec d||}{2||\vec r||} は微小なので、f(\frac{||\vec d||}{2||\vec r||}) は、
x=0 での、y=f(x) の接線のx=\frac{||\vec d||}{2||\vec r||} での値y=f(0)+f'(0)\frac{||\vec d||}{2||\vec r||} で
精度良く近似できる。そのため、
\frac{1}{r_q} \simeq \frac{1}{||\vec r||}(f(0)+f'(0)\frac{||\vec d||}{2||\vec r||})\hspace{50pt} (9-2)
ここで、
f(0)=1 \hspace{150pt} (9-3)
f'(0)=\lim_{x \to 0} \frac{f(x)-f(0)}{x}=\lim_{x \to 0}\frac{1}{x}(\frac{1}{||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||}-1)
=\lim_{x \to 0}\frac{1}{x}(\frac{1-||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||}{||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||})
=\lim_{x \to 0}\frac{\frac{1}{x}(1-||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||)}{||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||}=
\lim_{x \to 0}\frac{1}{x}(1-||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||)=
\lim_{x \to 0}\frac{1}{x}(1-||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||^2)/(1+||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||)
=\lim_{x \to 0}\frac{1}{2x}(1-||\frac{\vec r}{||\vec r ||}-x\frac{\vec d}{||\vec d||}||^2) 、
上の式を
||\vec{a}- \vec{b}||^2=||\vec{a}||^2+||\vec{b}||^2-2\vec{a} \cdot \vec{b}
(ここで、\vec{a} \cdot \vec{b}=\sum_{n=1}^{3}a_{n}b_{n}) 、
実数αに対して||\alpha \vec{a}||=\|\alpha \| ||\vec{a}||=
を利用して変形すると
f'(0)=\lim_{x \to 0}\frac{1}{2x}(-x^{2}+2x \frac{\vec{r}\cdot\vec{d}}{||r||\times||d||})
=\frac{\vec{r}\cdot\vec{d}}{||r||\times||d||} \hspace{100pt} (9-4)
(9-2)式に、 (9-3),(9-4)式を代入して、
\frac{1}{r_q} \simeq \frac{1}{||\vec r||}(1+\frac{\vec{r}\cdot\vec{d}}{2||r||^2}) \hspace{150pt} (9-5)
同様に計算すると
\frac{1}{r_{-q}} \simeq \frac{1}{||\vec r||}(1-\frac{\vec{r}\cdot\vec{d}}{2||r||^2})\hspace{150pt} (9-6)
(9-1)式に、 (9-5),(9-6)式を代入すると、
\phi(\vec r)=\frac{q \vec{r}\cdot\vec{d}}{4 \pi \varepsilon_0 ||r||^3} \hspace{150pt}(9-7)
上の式で、
\vec{p}=q \vec{d} \hspace{200pt}(9-8)
と置き,一対の電荷-q、q の作る双極子モーメントと呼ぶ。
これを用いると、双極子が離れた点\vec{r}に作る電位は、
\phi(\vec r)=\frac{ \vec{r}\cdot\vec{p}}{4 \pi \varepsilon_0 ||\vec r||^3}\hspace{150pt} (9-9)
この式と、点電荷の作る電位の\phi(\vec r)=\frac{ q}{4 \pi \varepsilon_0r}\hspace{150pt}
を比較すると、
電気双極子がつくる電位は、双極子からの距離の増加により、急速に減少することが分かる。
これが物質を外部から見ると、電荷をもたないようにみえる理由である。
等電位面
電位の等しい点をつないで出来る面を等電位面という。
等電位面と電気力線は直交していることが示せる。
導体表面の電界は、導体表面に垂直である。
これらの理由を考えてみてください。